Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Acute Gastroenteritis | Research article

Effects of the rotavirus vaccine program across age groups in the United States: analysis of national claims data, 2001–2016

Authors: Julia M. Baker, Rebecca M. Dahl, Justin Cubilo, Umesh D. Parashar, Benjamin A. Lopman

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

The direct effectiveness of infant rotavirus vaccination implemented in 2006 in the United States has been evaluated extensively, however, understanding of population-level vaccine effectiveness (VE) is still incomplete.

Methods

We analyzed time series data on rotavirus gastroenteritis (RVGE) and all-cause acute gastroenteritis (AGE) hospitalization rates in the United States from the MarketScan® Research Databases for July 2001–June 2016. Individuals were grouped into ages 0–4, 5–9, 10–14, 15–24, 25–44, and 45–64 years. Negative binomial regression models were fitted to monthly RVGE and AGE data to estimate the direct, indirect, overall, and total VE.

Results

A total of 9211 RVGE and 726,528 AGE hospitalizations were analyzed. Children 0–4 years of age had the largest declines in RVGE hospitalizations with direct VE of 87% (95% CI: 83, 90%). Substantial indirect effects were observed across age groups and generally declined in each older group. Overall VE against RVGE hospitalizations for all ages combined was 69% (95% CI: 62, 76%). Total VE was highest among young children; a vaccinated child in the post-vaccine era has a 95% reduced risk of RVGE hospitalization compared to a child in the pre-vaccine era. We observed higher direct VE in odd post-vaccine years and an opposite pattern for indirect VE.

Conclusions

Vaccine benefits extended to unvaccinated individuals in all age groups, suggesting infants are important drivers of disease transmission across the population. Imperfect disease classification and changing disease incidence may lead to bias in observed direct VE.

Trial registration

Not applicable.
Appendix
Available only for authorised users
Literature
1.
go back to reference International Vaccine Access Center (IVAC). VIEW-hub Report: Global Vaccine Introduction and Implementation. Baltimore: Johns Hopkins Bloomberg School of Public Health; 2016. International Vaccine Access Center (IVAC). VIEW-hub Report: Global Vaccine Introduction and Implementation. Baltimore: Johns Hopkins Bloomberg School of Public Health; 2016.
2.
go back to reference Tate JE, Panozzo CA, Payne DC, Patel MM, Cortese MM, Fowlkes AL, et al. Decline and change in seasonality of US rotavirus activity after the introduction of rotavirus vaccine. PEDIATRICS. 2009;124(2):465–71.CrossRef Tate JE, Panozzo CA, Payne DC, Patel MM, Cortese MM, Fowlkes AL, et al. Decline and change in seasonality of US rotavirus activity after the introduction of rotavirus vaccine. PEDIATRICS. 2009;124(2):465–71.CrossRef
3.
go back to reference Parashar UD, Alexander JP, Glass RI. Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC). Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2006;55(RR-12):1–13. Parashar UD, Alexander JP, Glass RI. Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC). Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2006;55(RR-12):1–13.
4.
go back to reference Charles MD, Holman RC, Curns AT, Parashar UD, Glass RI, Bresee JS. Hospitalizations Associated With Rotavirus Gastroenteritis in the United States, 1993–2002. Pediatr Infect Dis J. 2006;25(6):489–93.CrossRef Charles MD, Holman RC, Curns AT, Parashar UD, Glass RI, Bresee JS. Hospitalizations Associated With Rotavirus Gastroenteritis in the United States, 1993–2002. Pediatr Infect Dis J. 2006;25(6):489–93.CrossRef
5.
go back to reference Tate JE, Haynes A, Payne DC, Cortese MM, Lopman BA, Patel MM, et al. Trends in National Rotavirus Activity Before and After Introduction of Rotavirus Vaccine into the National Immunization Program in the United States, 2000 to 2012. Pediatr Infect Dis J. 2013;32(7):741–4.CrossRef Tate JE, Haynes A, Payne DC, Cortese MM, Lopman BA, Patel MM, et al. Trends in National Rotavirus Activity Before and After Introduction of Rotavirus Vaccine into the National Immunization Program in the United States, 2000 to 2012. Pediatr Infect Dis J. 2013;32(7):741–4.CrossRef
6.
go back to reference Leshem E, Tate JE, Steiner CA, Curns AT, Lopman BA, Parashar UD. Acute gastroenteritis hospitalizations among US children following implementation of the rotavirus vaccine. JAMA. 2015;313(22):2282.CrossRef Leshem E, Tate JE, Steiner CA, Curns AT, Lopman BA, Parashar UD. Acute gastroenteritis hospitalizations among US children following implementation of the rotavirus vaccine. JAMA. 2015;313(22):2282.CrossRef
7.
go back to reference Hemming-Harlo M, Markkula J, Huhti L, Salminen M, Vesikari T. Decrease of rotavirus gastroenteritis to a low level without resurgence for five years after universal RotaTeq vaccination in Finland. Pediatr Infect Dis J. 2016;35(12):1304–8.CrossRef Hemming-Harlo M, Markkula J, Huhti L, Salminen M, Vesikari T. Decrease of rotavirus gastroenteritis to a low level without resurgence for five years after universal RotaTeq vaccination in Finland. Pediatr Infect Dis J. 2016;35(12):1304–8.CrossRef
8.
9.
go back to reference Jayasinghe S, Macartney K. Estimating rotavirus gastroenteritis hospitalisations by using hospital episode statistics before and after the introduction of rotavirus vaccine in Australia. Vaccine. 2013;31(6):967–72.CrossRef Jayasinghe S, Macartney K. Estimating rotavirus gastroenteritis hospitalisations by using hospital episode statistics before and after the introduction of rotavirus vaccine in Australia. Vaccine. 2013;31(6):967–72.CrossRef
10.
go back to reference Rha B, Tate JE, Payne DC, Cortese MM, Lopman BA, Curns AT, et al. Effectiveness and impact of rotavirus vaccines in the United States – 2006–2012. Expert Rev Vaccines. 2014;13(3):365–76.CrossRef Rha B, Tate JE, Payne DC, Cortese MM, Lopman BA, Curns AT, et al. Effectiveness and impact of rotavirus vaccines in the United States – 2006–2012. Expert Rev Vaccines. 2014;13(3):365–76.CrossRef
11.
go back to reference Pindyck T, Tate JE, Parashar UD. A decade of experience with rotavirus vaccination in the United States – vaccine uptake, effectiveness, and impact. Expert Rev Vaccines. 2018;17(7):593–606.CrossRef Pindyck T, Tate JE, Parashar UD. A decade of experience with rotavirus vaccination in the United States – vaccine uptake, effectiveness, and impact. Expert Rev Vaccines. 2018;17(7):593–606.CrossRef
12.
go back to reference Hsu VP, Staat MA, Roberts N, Thieman C, Bernstein DI, Bresee J, et al. Use of active surveillance to validate International Classification of Diseases code estimates of rotavirus hospitalizations in children. Pediatrics. 2005;115(1):78–82.CrossRef Hsu VP, Staat MA, Roberts N, Thieman C, Bernstein DI, Bresee J, et al. Use of active surveillance to validate International Classification of Diseases code estimates of rotavirus hospitalizations in children. Pediatrics. 2005;115(1):78–82.CrossRef
13.
go back to reference Patel MM, Tate JE, Selvarangan R, Daskalaki I, Jackson MA, Curns AT, et al. Routine Laboratory Testing Data for Surveillance of Rotavirus Hospitalizations to Evaluate the Impact of Vaccination. Pediatr Infect Dis J. 2007;26(10):914–9.CrossRef Patel MM, Tate JE, Selvarangan R, Daskalaki I, Jackson MA, Curns AT, et al. Routine Laboratory Testing Data for Surveillance of Rotavirus Hospitalizations to Evaluate the Impact of Vaccination. Pediatr Infect Dis J. 2007;26(10):914–9.CrossRef
14.
go back to reference Lopman BA, Curns AT, Yen C, Parashar UD. Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. J Infect Dis. 2011;204(7):980–6.CrossRef Lopman BA, Curns AT, Yen C, Parashar UD. Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. J Infect Dis. 2011;204(7):980–6.CrossRef
15.
go back to reference Halloran ME, Struchiner CJ, Longini IM. Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am J Epidemiol. 1997;146(10):789–803.CrossRef Halloran ME, Struchiner CJ, Longini IM. Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am J Epidemiol. 1997;146(10):789–803.CrossRef
16.
go back to reference Haber M. Estimation of the direct and indirect effects of vaccination. Stat Med. 1999;18(16):2101–9.CrossRef Haber M. Estimation of the direct and indirect effects of vaccination. Stat Med. 1999;18(16):2101–9.CrossRef
17.
go back to reference Smith PG, Rodrigues LC, Fine PE. Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int J Epidemiol. 1984;13(1):87–93.CrossRef Smith PG, Rodrigues LC, Fine PE. Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int J Epidemiol. 1984;13(1):87–93.CrossRef
18.
go back to reference Goldstein E, Pitzer VE, O’Hagan JJ, Lipsitch M. Temporally varying relative risks for infectious diseases: implications for infectious disease control. Epidemiology. 2017;28(1):136–44.CrossRef Goldstein E, Pitzer VE, O’Hagan JJ, Lipsitch M. Temporally varying relative risks for infectious diseases: implications for infectious disease control. Epidemiology. 2017;28(1):136–44.CrossRef
19.
go back to reference Panozzo CA, Becker-Dreps S, Pate V, Weber DJ, Jonsson Funk M, Sturmer T, et al. Direct, indirect, Total, and overall effectiveness of the rotavirus vaccines for the prevention of gastroenteritis hospitalizations in privately insured US children, 2007-2010. Am J Epidemiol. 2014;179(7):895–909.CrossRef Panozzo CA, Becker-Dreps S, Pate V, Weber DJ, Jonsson Funk M, Sturmer T, et al. Direct, indirect, Total, and overall effectiveness of the rotavirus vaccines for the prevention of gastroenteritis hospitalizations in privately insured US children, 2007-2010. Am J Epidemiol. 2014;179(7):895–909.CrossRef
21.
go back to reference Leshem E, Moritz RE, Curns AT, Zhou F, Tate JE, Lopman BA, et al. Rotavirus vaccines and health care utilization for diarrhea in the United States (2007-2011). Pediatrics. 2014;134(1):15–23.CrossRef Leshem E, Moritz RE, Curns AT, Zhou F, Tate JE, Lopman BA, et al. Rotavirus vaccines and health care utilization for diarrhea in the United States (2007-2011). Pediatrics. 2014;134(1):15–23.CrossRef
23.
go back to reference Payne DC, Staat MA, Edwards KM, Szilagyi PG, Weinberg GA, Hall CB, et al. Direct and indirect effects of rotavirus vaccination upon childhood hospitalizations in 3 US counties, 2006-2009. Clin Infect Dis. 2011;53(3):245–53.CrossRef Payne DC, Staat MA, Edwards KM, Szilagyi PG, Weinberg GA, Hall CB, et al. Direct and indirect effects of rotavirus vaccination upon childhood hospitalizations in 3 US counties, 2006-2009. Clin Infect Dis. 2011;53(3):245–53.CrossRef
24.
go back to reference Cortes JE, Curns AT, Tate JE, Cortese MM, Patel MM, Zhou F, et al. Rotavirus vaccine and health care utilization for diarrhea in U.S. children. N Engl J Med. 2011;365(12):1108–17.CrossRef Cortes JE, Curns AT, Tate JE, Cortese MM, Patel MM, Zhou F, et al. Rotavirus vaccine and health care utilization for diarrhea in U.S. children. N Engl J Med. 2011;365(12):1108–17.CrossRef
26.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. Riley S, editor. PLoS Med. 2008 Mar 25;5(3):e74. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. Riley S, editor. PLoS Med. 2008 Mar 25;5(3):e74.
27.
go back to reference Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc R Soc B Biol Sci. 2006;273(1600):2541–50.CrossRef Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc R Soc B Biol Sci. 2006;273(1600):2541–50.CrossRef
28.
go back to reference Pitzer VE, Atkins KE, de Blasio BF, Van Effelterre T, Atchison CJ, Harris JP, et al. Direct and Indirect Effects of Rotavirus Vaccination: Comparing Predictions from Transmission Dynamic Models. Roberts MG, editor. PLoS ONE. 2012;7(8):e42320. Pitzer VE, Atkins KE, de Blasio BF, Van Effelterre T, Atchison CJ, Harris JP, et al. Direct and Indirect Effects of Rotavirus Vaccination: Comparing Predictions from Transmission Dynamic Models. Roberts MG, editor. PLoS ONE. 2012;7(8):e42320.
29.
go back to reference Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. 2009;325(5938):290–4.CrossRef Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. 2009;325(5938):290–4.CrossRef
30.
go back to reference Atchison C, Lopman B, Edmunds WJ. Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales. Vaccine. 2010;28(18):3118–26.CrossRef Atchison C, Lopman B, Edmunds WJ. Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales. Vaccine. 2010;28(18):3118–26.CrossRef
31.
go back to reference Anderson EJ, Weber SG. Rotavirus infection in adults. Lancet Infect Dis. 2004;4(2):91–9.CrossRef Anderson EJ, Weber SG. Rotavirus infection in adults. Lancet Infect Dis. 2004;4(2):91–9.CrossRef
32.
go back to reference Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Kang Y. Vaccination coverage among children aged 19–35 months — United States, 2016. MMWR Morb Mortal Wkly Rep. 2017;66(43):1171–7.CrossRef Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Kang Y. Vaccination coverage among children aged 19–35 months — United States, 2016. MMWR Morb Mortal Wkly Rep. 2017;66(43):1171–7.CrossRef
33.
go back to reference Bowen MD, Mijatovic-Rustempasic S, Esona MD, Teel EN, Gautam R, Sturgeon M, et al. Rotavirus strain trends during the Postlicensure vaccine era: United States, 2008–2013. J Infect Dis. 2016;214(5):732–8.CrossRef Bowen MD, Mijatovic-Rustempasic S, Esona MD, Teel EN, Gautam R, Sturgeon M, et al. Rotavirus strain trends during the Postlicensure vaccine era: United States, 2008–2013. J Infect Dis. 2016;214(5):732–8.CrossRef
34.
go back to reference Aliabadi N, Tate JE, Haynes AK, Parashar UD. Centers for Disease Control and Prevention (CDC). Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination—United States, 2000-2014. MMWR Morb Mortal Wkly Rep. 2015;64(13):337–42.PubMedPubMedCentral Aliabadi N, Tate JE, Haynes AK, Parashar UD. Centers for Disease Control and Prevention (CDC). Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination—United States, 2000-2014. MMWR Morb Mortal Wkly Rep. 2015;64(13):337–42.PubMedPubMedCentral
35.
go back to reference Tate JE, Mijatovic-Rustempasic S, Tam KI, Lyde FC, Payne DC, Szilagyi P, et al. Comparison of 2 assays for diagnosing rotavirus and evaluating vaccine effectiveness in children with gastroenteritis. Emerg Infect Dis. 2013;19(8):1245–52.CrossRef Tate JE, Mijatovic-Rustempasic S, Tam KI, Lyde FC, Payne DC, Szilagyi P, et al. Comparison of 2 assays for diagnosing rotavirus and evaluating vaccine effectiveness in children with gastroenteritis. Emerg Infect Dis. 2013;19(8):1245–52.CrossRef
36.
go back to reference Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Dietz V. Vaccination coverage among children aged 19–35 months — United States, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(39):1065–71.CrossRef Hill HA, Elam-Evans LD, Yankey D, Singleton JA, Dietz V. Vaccination coverage among children aged 19–35 months — United States, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(39):1065–71.CrossRef
Metadata
Title
Effects of the rotavirus vaccine program across age groups in the United States: analysis of national claims data, 2001–2016
Authors
Julia M. Baker
Rebecca M. Dahl
Justin Cubilo
Umesh D. Parashar
Benjamin A. Lopman
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3816-7

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.