Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Ketolides | Research article

Staphylococcus aureus with an erm-mediated constitutive macrolide-lincosamide-streptogramin B resistance phenotype has reduced susceptibility to the new ketolide, solithromycin

Authors: Weiming Yao, Guangjian Xu, Duoyun Li, Bing Bai, Hongyan Wang, Hang Cheng, Jinxin Zheng, Xiang Sun, Zhiwei Lin, Qiwen Deng, Zhijian Yu

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Solithromycin, the fourth generation of ketolides, has been demonstrated potent antibacterial effect against commonly-isolated gram-positive strains. However, Staphylococcus aureus (S. aureus) strains with a higher solithromycin MIC have already been emerged, the mechanism of which is unknown.

Methods

Antimicrobial susceptibility test was performed on 266 strains of S. aureus. The antibiotic resistance phenotype of erm-positive strain was determined by D-zone test. Spontaneous mutation frequency analysis was performed to compare the risk levels for solithromycin resistance among different strains. Efflux pumps and mutational analysis of ribosomal fragments as well as erm(B) gene domains were detected. Quantitative reverse transcription polymerase chain reaction was conducted to compare the transcriptional expression of the erm gene between the constitutive macrolide-lincosamide-streptogramin B (cMLSB)- and inducible MLSB (iMLSB)-phenotypes.

Results

In the erm-positive S. aureus strains, the minimum inhibitory concentration (MIC)50/90 of solithromycin (2/> 16 mg/L) was significantly higher than that in the erm-negative strains (0.125/0.25 mg/L). Of note, the MIC50 value of the strains with iMLSB (0.25 mg/L) was significantly lower than that of the strains with cMLSB (4 mg/L). A comparison among strains demonstrated that the median mutational frequency in isolates with cMLSB (> 1.2 × 10− 4) was approximately > 57-fold and > 3333-fold higher than that in iMLSB strains (2.1 × 10− 6) and in erythromycin-sensitive strains (3.6 × 10− 8), respectively. The differential antibiotic in vitro activity against strains between cMLSB and iMLSB could not be explained by efflux pump carriers or genetic mutations in the test genes. The expression of the erm genes in strains with cMLSB did not differ from that in strains with iMLSB.

Conclusions

The reduced susceptibility to solithromycin by S. aureus was associated with the cMLSB resistance phenotype mediated by erm.
Appendix
Available only for authorised users
Literature
1.
go back to reference Geisinger E, Isberg RR. Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis. 2017;215(Suppl 1):9–17.CrossRef Geisinger E, Isberg RR. Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis. 2017;215(Suppl 1):9–17.CrossRef
2.
go back to reference Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39:577–85.CrossRef Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39:577–85.CrossRef
3.
go back to reference Bouchiat C, El-Zeenni N, Chakrakodi B, Nagaraj S, Arakere G, Etienne J. Epidemiology of Staphylococcus aureus in Bangalore, India: emergence of the ST217 clone and high rate of resistance to erythromycin and ciprofloxacin in the community. New Microbes New Infect. 2015;7:15–20.CrossRef Bouchiat C, El-Zeenni N, Chakrakodi B, Nagaraj S, Arakere G, Etienne J. Epidemiology of Staphylococcus aureus in Bangalore, India: emergence of the ST217 clone and high rate of resistance to erythromycin and ciprofloxacin in the community. New Microbes New Infect. 2015;7:15–20.CrossRef
4.
go back to reference Schmitz FJ, Petridou J, Jagusch H, Astfalk N, Scheuring S, Schwarz S. Molecular characterization of ketolide-resistant erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J Antimicrob Chemother. 2002;49:611–7.CrossRef Schmitz FJ, Petridou J, Jagusch H, Astfalk N, Scheuring S, Schwarz S. Molecular characterization of ketolide-resistant erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J Antimicrob Chemother. 2002;49:611–7.CrossRef
5.
go back to reference Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol Cell. 2013;52:629–42.CrossRef Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol Cell. 2013;52:629–42.CrossRef
6.
go back to reference Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA, Golden A, Schweizer F, Gorityala B, Lagacé-Wiens PR, Walkty AJ, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs. 2016;76:1737–57.CrossRef Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA, Golden A, Schweizer F, Gorityala B, Lagacé-Wiens PR, Walkty AJ, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs. 2016;76:1737–57.CrossRef
7.
go back to reference Farrell DJ, Flamm RK, Sader HS, Jones RN. Results from the Solithromycin international surveillance program (2014). Antimicrob Agents Chemother. 2016;60:3662–8.CrossRef Farrell DJ, Flamm RK, Sader HS, Jones RN. Results from the Solithromycin international surveillance program (2014). Antimicrob Agents Chemother. 2016;60:3662–8.CrossRef
8.
go back to reference File TM Jr, Rewerska B, Vucinic-Mihailovic V, Gonong JRV, Das AF, Keedy K, Taylor D, Sheets A, Fernandes P, Oldach D, Jamieson BD. SOLITAIRE-IV: a randomized, double-blind, multicenter study comparing the efficacy and safety of intravenous-to-oral solithromycin to intravenous-to-oral moxifloxacin for treatment of community-acquired bacterial pneumonia. Clin Infect Dis. 2016;63:1007–16.CrossRef File TM Jr, Rewerska B, Vucinic-Mihailovic V, Gonong JRV, Das AF, Keedy K, Taylor D, Sheets A, Fernandes P, Oldach D, Jamieson BD. SOLITAIRE-IV: a randomized, double-blind, multicenter study comparing the efficacy and safety of intravenous-to-oral solithromycin to intravenous-to-oral moxifloxacin for treatment of community-acquired bacterial pneumonia. Clin Infect Dis. 2016;63:1007–16.CrossRef
9.
go back to reference Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 2012;7:959–78.CrossRef Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 2012;7:959–78.CrossRef
10.
go back to reference Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, Omizu Y, Kishi Y, Yagihashi A, Kurokawa I. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiol Infect. 1994;113:259–66.CrossRef Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, Omizu Y, Kishi Y, Yagihashi A, Kurokawa I. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiol Infect. 1994;113:259–66.CrossRef
11.
go back to reference Yoon EJ, Kwon AR, Min YH, Choi EC. Foggy D-shaped zone of inhibition in Staphylococcus aureus owing to a dual character of both inducible and constitutive resistance to macrolide-lincosamide-streptogramin B. J Antimicrob Chemother. 2008;61:533–40.CrossRef Yoon EJ, Kwon AR, Min YH, Choi EC. Foggy D-shaped zone of inhibition in Staphylococcus aureus owing to a dual character of both inducible and constitutive resistance to macrolide-lincosamide-streptogramin B. J Antimicrob Chemother. 2008;61:533–40.CrossRef
12.
go back to reference Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Sixth Informational Supplement M100-S26. Wayne: CLSI; 2016. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Sixth Informational Supplement M100-S26. Wayne: CLSI; 2016.
13.
go back to reference Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother. 2009;53:5265–74.CrossRef Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother. 2009;53:5265–74.CrossRef
14.
go back to reference Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40:2562–6.CrossRef Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40:2562–6.CrossRef
15.
go back to reference Drago L, De Vecchi E, Nicola L, Colombo A, Gismondo MR. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother. 2004;54:542–5.CrossRef Drago L, De Vecchi E, Nicola L, Colombo A, Gismondo MR. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother. 2004;54:542–5.CrossRef
16.
go back to reference McGhee P, Clark C, Kosowska-Shick KM, Nagai K, Dewasse B, Beachel L, Appelbaum PC. In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms. Antimicrob Agents Chemother. 2010;54:230–8.CrossRef McGhee P, Clark C, Kosowska-Shick KM, Nagai K, Dewasse B, Beachel L, Appelbaum PC. In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms. Antimicrob Agents Chemother. 2010;54:230–8.CrossRef
17.
go back to reference Walsh F, Willcock J, Amyes S. High-level telithromycin resistance in laboratory-generated mutants of Streptococcus pneumoniae. J Antimicrob Chemother. 2003;52:345–53.CrossRef Walsh F, Willcock J, Amyes S. High-level telithromycin resistance in laboratory-generated mutants of Streptococcus pneumoniae. J Antimicrob Chemother. 2003;52:345–53.CrossRef
18.
go back to reference Tait-Kamradt A, Reinert RR, Al-Lahham A, Low D, Sutcliffe J. High-level ketolide-resistant streptococci. In: Programs and Abstracts of the Forty-first Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago; Washington, DC: American Society for Microbiology; 2001. p. 101. Abstract C1-1813. Tait-Kamradt A, Reinert RR, Al-Lahham A, Low D, Sutcliffe J. High-level ketolide-resistant streptococci. In: Programs and Abstracts of the Forty-first Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago; Washington, DC: American Society for Microbiology; 2001. p. 101. Abstract C1-1813.
19.
go back to reference Farrell DJ, Morrissey I, Bakker S, Felmingham D. Mutations in erm(B) associated with rare, low-level telithromycin resistance in Streptococcus pneumoniae: 3-year data from PROTEKT. In: Programs and Abstracts of the 14th European Congress of Clinical Microbiology and Infectious Diseases. Prague: European Society of Clinical Microbiology and Infectious Diseases; 2004. Abstract P1465. Farrell DJ, Morrissey I, Bakker S, Felmingham D. Mutations in erm(B) associated with rare, low-level telithromycin resistance in Streptococcus pneumoniae: 3-year data from PROTEKT. In: Programs and Abstracts of the 14th European Congress of Clinical Microbiology and Infectious Diseases. Prague: European Society of Clinical Microbiology and Infectious Diseases; 2004. Abstract P1465.
20.
go back to reference Hirakata Y, Mizuta Y, Wada A, Kondoh A, Kurihara S, Izumikawa K, Seki M, Yanagihara K, Miyazaki Y, Tomono K, Kohno S. The first telithromycin-resistant Streptococcus pneumoniae isolate in Japan associated with erm(B) and mutations in 23S rRNA and riboprotein L4. Jpn J Infect Dis. 2007;60:48–50.PubMed Hirakata Y, Mizuta Y, Wada A, Kondoh A, Kurihara S, Izumikawa K, Seki M, Yanagihara K, Miyazaki Y, Tomono K, Kohno S. The first telithromycin-resistant Streptococcus pneumoniae isolate in Japan associated with erm(B) and mutations in 23S rRNA and riboprotein L4. Jpn J Infect Dis. 2007;60:48–50.PubMed
21.
go back to reference Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46:125–31.CrossRef Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46:125–31.CrossRef
22.
go back to reference Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. In vitro activities of telithromycin, linezolid, and quinupristin–dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob Agents Chemother. 2004;48:3169–71.CrossRef Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. In vitro activities of telithromycin, linezolid, and quinupristin–dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob Agents Chemother. 2004;48:3169–71.CrossRef
23.
go back to reference Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, Wondrack L, Walker A, Jacobs MR, Sutcliffe J. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother. 2000;44:3395–401.CrossRef Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, Wondrack L, Walker A, Jacobs MR, Sutcliffe J. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother. 2000;44:3395–401.CrossRef
24.
go back to reference Perez-Trallero E, Marimon JM, Iglesias L, Larruskain J. Fluoroquinolone and macrolide treatment failure in pneumococcal pneumonia and selection of multidrug-resistant isolates. Emerg Infect Dis. 2003;9:1159–62.CrossRef Perez-Trallero E, Marimon JM, Iglesias L, Larruskain J. Fluoroquinolone and macrolide treatment failure in pneumococcal pneumonia and selection of multidrug-resistant isolates. Emerg Infect Dis. 2003;9:1159–62.CrossRef
25.
go back to reference Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother. 2006;50:893–8.CrossRef Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother. 2006;50:893–8.CrossRef
26.
go back to reference Park B, Min YH. Inducible expression of erm(B) by the ketolides telithromycin and cethromycin. Int J Antimicrob Agents. 2015;46:226–7.CrossRef Park B, Min YH. Inducible expression of erm(B) by the ketolides telithromycin and cethromycin. Int J Antimicrob Agents. 2015;46:226–7.CrossRef
27.
go back to reference Sothiselvam S, Liu B, Han W, Ramu H, Klepacki D, Atkinson GC, Brauer A, Remm M, Tenson T, Schulten K, Vázquez-Laslop N, Mankin AS. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A. 2014;111:9804–9.CrossRef Sothiselvam S, Liu B, Han W, Ramu H, Klepacki D, Atkinson GC, Brauer A, Remm M, Tenson T, Schulten K, Vázquez-Laslop N, Mankin AS. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A. 2014;111:9804–9.CrossRef
28.
go back to reference Douthwaite S, Jalava J, Jakobsen L. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm. Mol Microbiol. 2005;58:613–22.CrossRef Douthwaite S, Jalava J, Jakobsen L. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm. Mol Microbiol. 2005;58:613–22.CrossRef
Metadata
Title
Staphylococcus aureus with an erm-mediated constitutive macrolide-lincosamide-streptogramin B resistance phenotype has reduced susceptibility to the new ketolide, solithromycin
Authors
Weiming Yao
Guangjian Xu
Duoyun Li
Bing Bai
Hongyan Wang
Hang Cheng
Jinxin Zheng
Xiang Sun
Zhiwei Lin
Qiwen Deng
Zhijian Yu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3779-8

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue