Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

The respiratory microbiota: new insights into pulmonary tuberculosis

Authors: Setegn Eshetie, Dick van Soolingen

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Previous studies demonstrated that the diversity and composition of respiratory microbiota in TB patients were different from healthy individuals. Therefore, the aim of the present analysis was to estimate the relative proportion of respiratory microbiota at phylum and genus levels among TB cases and healthy controls.

Methods

The PubMed and Google Scholar online databases were searched to retrieve relevant studies for the analysis. The statistical analysis was done using STATA version 11, pooled estimates are presented using graphs. The summary of findings in included studies is also presented in Table 1.

Results

The phylum level analysis shows that the pooled proportions of Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Crenarchaeota were determined among tuberculosis patients and healthy controls. In brief, Firmicutes, and Proteobacteria were the most abundant bacterial phyla in both TB cases and healthy controls, composing 39.9 and 22.7% in TB cases and 39.4 and 19.5% in healthy controls, respectively. The genus level analysis noted that Streptococcus (35.01%), Neisseria (27.1%), Prevotella (9.02%) and Veillonella (7.8%) were abundant in TB patients. The Prevotella (36.9%), Gammaproteobacteria (22%), Streptococcus (19.2%) and Haemophilus (15.4%) were largely seen in healthy controls. Interestingly, Veillonella, Rothia, Leuconostoc were unique to TB cases, whereas Lactobacillus, and Gammaproteobacteria, Haemophilus, and Actinobacillus were identified only in healthy controls.

Conclusion

The composition of the respiratory microbiota in TB patients and healthy controls were quite different. More deep sequencing studies are needed to explore the microbial variation in the respiratory system in connection with TB.
Literature
1.
go back to reference Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015;69:145–66.CrossRef Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015;69:145–66.CrossRef
2.
go back to reference Zhang Y, Lun C-Y, Tsui SK-W. Metagenomics: a new way to illustrate the crosstalk between infectious diseases and host microbiome. Int J Mol Sci. 2015;16(11):26263–79.CrossRef Zhang Y, Lun C-Y, Tsui SK-W. Metagenomics: a new way to illustrate the crosstalk between infectious diseases and host microbiome. Int J Mol Sci. 2015;16(11):26263–79.CrossRef
3.
go back to reference Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol. 2015;6. Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol. 2015;6.
4.
go back to reference Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett. 2016. Hauptmann M, Schaible UE. Linking microbiota and respiratory disease. FEBS Lett. 2016.
5.
go back to reference BOTERO LE, Delgado-Serrano L, Cepeda Hernandez ML, Del Portillo Obando P, Zambrano Eder MM. The human microbiota: the role of microbial communities in health and disease. Acta Biológica Colombiana. 2016;21(1):5–15. BOTERO LE, Delgado-Serrano L, Cepeda Hernandez ML, Del Portillo Obando P, Zambrano Eder MM. The human microbiota: the role of microbial communities in health and disease. Acta Biológica Colombiana. 2016;21(1):5–15.
6.
go back to reference Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert review of respiratory medicine. 2013;7(3):245–57.CrossRef Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert review of respiratory medicine. 2013;7(3):245–57.CrossRef
7.
go back to reference World Health Organization. Global tuberculosis report 2015. Geneva, Swizerland: World Health Organization; 2015. World Health Organization. Global tuberculosis report 2015. Geneva, Swizerland: World Health Organization; 2015.
8.
go back to reference World Health Organization. Global tuberculosis report 2014. Geneva, Swizerland: World Health Organization; 2014. World Health Organization. Global tuberculosis report 2014. Geneva, Swizerland: World Health Organization; 2014.
9.
go back to reference Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.CrossRef Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.CrossRef
10.
go back to reference Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, Landi MT. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17(1):163.CrossRef Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, Landi MT. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17(1):163.CrossRef
11.
go back to reference Toma I, Siegel MO, Keiser J, Yakovleva A, Kim A, Davenport L, Devaney J, Hoffman EP, Alsubail R, Crandall KA. Single-molecule long-read 16S sequencing to characterize the lung microbiome from mechanically ventilated patients with suspected pneumonia. J Clin Microbiol. 2014;52(11):3913–21.CrossRef Toma I, Siegel MO, Keiser J, Yakovleva A, Kim A, Davenport L, Devaney J, Hoffman EP, Alsubail R, Crandall KA. Single-molecule long-read 16S sequencing to characterize the lung microbiome from mechanically ventilated patients with suspected pneumonia. J Clin Microbiol. 2014;52(11):3913–21.CrossRef
12.
go back to reference Hui AW-H, Lau H-W, Chan TH-T, Tsui SK-W. The human microbiota: a new direction in the investigation of thoracic diseases. Journal of thoracic disease. 2013;5(Suppl 2):S127.PubMedPubMedCentral Hui AW-H, Lau H-W, Chan TH-T, Tsui SK-W. The human microbiota: a new direction in the investigation of thoracic diseases. Journal of thoracic disease. 2013;5(Suppl 2):S127.PubMedPubMedCentral
13.
go back to reference Hong B-Y, Maulén NP, Adami AJ, Granados H, Balcells ME, Cervantes J. Microbiome changes during tuberculosis and antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–26.CrossRef Hong B-Y, Maulén NP, Adami AJ, Granados H, Balcells ME, Cervantes J. Microbiome changes during tuberculosis and antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–26.CrossRef
14.
go back to reference Cheung MK, Lam WY, Fung WYW, Law PTW, Au CH, Nong W, Kam KM, Kwan HS, Tsui SKW. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One. 2013;8(1):e54574.CrossRef Cheung MK, Lam WY, Fung WYW, Law PTW, Au CH, Nong W, Kam KM, Kwan HS, Tsui SKW. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One. 2013;8(1):e54574.CrossRef
15.
go back to reference Wu J, Liu W, He L, Huang F, Chen J, Cui P, Shen Y, Zhao J, Wang W, Zhang Y. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One. 2013;8(12):e83445.CrossRef Wu J, Liu W, He L, Huang F, Chen J, Cui P, Shen Y, Zhao J, Wang W, Zhang Y. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One. 2013;8(12):e83445.CrossRef
16.
go back to reference Krishna P, Jain A, Bisen P. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis. 2016;35(7):1205–10.CrossRef Krishna P, Jain A, Bisen P. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis. 2016;35(7):1205–10.CrossRef
17.
go back to reference Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S, Guo X. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol. 2012;12(1):276.CrossRef Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S, Guo X. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol. 2012;12(1):276.CrossRef
18.
go back to reference Botero LE, Delgado-Serrano L, Cepeda ML, Bustos JR, Anzola JM, Del Portillo P, Robledo J, Zambrano MM. Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis. Microbiome. 2014;2(1):29.CrossRef Botero LE, Delgado-Serrano L, Cepeda ML, Bustos JR, Anzola JM, Del Portillo P, Robledo J, Zambrano MM. Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis. Microbiome. 2014;2(1):29.CrossRef
19.
go back to reference Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489(7415):250–6.CrossRef Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489(7415):250–6.CrossRef
20.
go back to reference Kawamura Y, Kamiya Y. Metagenomic analysis permitting identification of the minority bacterial populations in the oral microbiota. Journal of Oral Biosciences. 2012;54(3):132–7.CrossRef Kawamura Y, Kamiya Y. Metagenomic analysis permitting identification of the minority bacterial populations in the oral microbiota. Journal of Oral Biosciences. 2012;54(3):132–7.CrossRef
21.
go back to reference Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert review of respiratory medicine. 2011;5(6):809–21.CrossRef Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert review of respiratory medicine. 2011;5(6):809–21.CrossRef
Metadata
Title
The respiratory microbiota: new insights into pulmonary tuberculosis
Authors
Setegn Eshetie
Dick van Soolingen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3712-1

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue