Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Circumcision status at HIV infection is not associated with plasma viral load in men: analysis of specimens from a randomized controlled trial

Authors: Stephanie M. Davis, Sherri Pals, Chunfu Yang, Elijah Odoyo-June, Joy Chang, Maroya Spalding Walters, Walter Jaoko, Naomi Bock, Larry Westerman, Carlos Toledo, Robert C. Bailey

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Male circumcision provides men with approximately 60% protection from acquiring HIV infection via heterosexual sex, and has become a key component of HIV prevention efforts in sub-Saharan Africa. Possible mechanisms for this protection include removal of the inflammatory anaerobic sub-preputial environment and the high concentration of Langerhans cells on the inside of the foreskin, both believed to promote local vulnerability to HIV infection. In people who do acquire HIV, viral load is partially determined by infecting partner viral load, potentially mediated by size of infecting inoculum. By removing a portal for virion entry, prior male circumcision could decrease infecting inoculum and thus viral load in men who become HIV-infected, conferring the known associated benefits of slower progression to disease and decreased infectiousness.

Methods

We performed an as-treated analysis of plasma samples collected under a randomized controlled trial of male circumcision for HIV prevention, comparing men based on their circumcision status at the time of HIV acquisition, to determine whether circumcision is associated with lower viral load. Eligible men were seroconverters who had at least one plasma sample available drawn at least 6 months after infection, reported no potential exposures other than vaginal sex and, for those who were circumcised, were infected more than 6 weeks after circumcision, to eliminate the open wound as a confounder. Initial viral load testing indicated that quality of pre-2007 samples might have been compromised during storage and they were excluded, as were those with undetectable or unquantifiable results. Log viral loads were compared between groups using univariable and multivariable linear regression, adjusting for sample age and sexually transmitted infection diagnosis with 3.5 months of seroconversion, with a random effect for intra-individual clustering for samples from the same man. A per-protocol analysis was also performed.

Results

There were no viral load differences between men who were circumcised and uncircumcised at the time of HIV infection (means 4.00 and 4.03 log10 copies/mL respectively, p = .88) in any analysis.

Conclusion

Circumcision status at the time of HIV infection does not affect viral load in men.

Trial registration

The original RCT which provided the samples was ClinicalTrials.​gov trial NCT00059371.
Literature
1.
go back to reference Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):e298.CrossRefPubMedPubMedCentral Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):e298.CrossRefPubMedPubMedCentral
2.
go back to reference Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369(9562):643–56.CrossRefPubMed Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369(9562):643–56.CrossRefPubMed
3.
go back to reference Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369(9562):657–66.CrossRefPubMed Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369(9562):657–66.CrossRefPubMed
6.
go back to reference Saathoff E, Pritsch M, Geldmacher C, Hoffmann O, Koehler RN, Maboko L, et al. Viral and host factors associated with the HIV-1 viral load set point in adults from Mbeya region. Tanzania J Acquir Immune Defic Syndr. 2010;54(3):324–30.CrossRefPubMed Saathoff E, Pritsch M, Geldmacher C, Hoffmann O, Koehler RN, Maboko L, et al. Viral and host factors associated with the HIV-1 viral load set point in adults from Mbeya region. Tanzania J Acquir Immune Defic Syndr. 2010;54(3):324–30.CrossRefPubMed
7.
go back to reference Hodcroft E, Hadfield JD, Fearnhill E, Phillips A, Dunn D, O'Shea D, et al, on behalf of the UK HIV Drug Resistance Database and the UK CHIC Study. The contribution of viral genotype to plasma viral set-point in HIV infection. PLoS Pathog. 2014 10(5): e1004112. doi: https://doi.org/10.1371/journal.ppat.1004112 Hodcroft E, Hadfield JD, Fearnhill E, Phillips A, Dunn D, O'Shea D, et al, on behalf of the UK HIV Drug Resistance Database and the UK CHIC Study. The contribution of viral genotype to plasma viral set-point in HIV infection. PLoS Pathog. 2014 10(5): e1004112. doi: https://​doi.​org/​10.​1371/​journal.​ppat.​1004112
9.
go back to reference Tang J, Tang S, Lobashevsky E, Zulu I, Aldrovandi G, Allen S, et al. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retrovir. 2004;20(1):19–25.CrossRefPubMed Tang J, Tang S, Lobashevsky E, Zulu I, Aldrovandi G, Allen S, et al. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retrovir. 2004;20(1):19–25.CrossRefPubMed
10.
go back to reference Hecht FM, Hartogensis W, Bragg L, Bacchetti P, Atchison R, Grant R, et al. HIV RNA level in early infection is predicted by viral load in the transmission source. AIDS. 2010;24(7):941–5.CrossRefPubMedPubMedCentral Hecht FM, Hartogensis W, Bragg L, Bacchetti P, Atchison R, Grant R, et al. HIV RNA level in early infection is predicted by viral load in the transmission source. AIDS. 2010;24(7):941–5.CrossRefPubMedPubMedCentral
12.
go back to reference Lingappa JR, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, et al. On behalf of Partners in Prevention HSV/HIV transmission study team. Partner characteristics predicting HIV-1 set point in sexually acquired HIV-1 among African seroconverters. AIDS Res Hum Retrovir. 2013;29(1):164–71.CrossRefPubMed Lingappa JR, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, et al. On behalf of Partners in Prevention HSV/HIV transmission study team. Partner characteristics predicting HIV-1 set point in sexually acquired HIV-1 among African seroconverters. AIDS Res Hum Retrovir. 2013;29(1):164–71.CrossRefPubMed
14.
go back to reference Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–70.CrossRefPubMed Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–70.CrossRefPubMed
17.
go back to reference Eller MA, Opollo MS, Liu M, Redd AD, Eller LA, Kityo C, et al. HIV type 1 disease progression to AIDS and death in a rural Ugandan cohort is primarily dependent on viral load despite variable subtype and T-cell immune activation levels. J Inf Dis. 2014;211(10):1574–84.CrossRef Eller MA, Opollo MS, Liu M, Redd AD, Eller LA, Kityo C, et al. HIV type 1 disease progression to AIDS and death in a rural Ugandan cohort is primarily dependent on viral load despite variable subtype and T-cell immune activation levels. J Inf Dis. 2014;211(10):1574–84.CrossRef
18.
go back to reference Fraser C, Hollingsworth D, Chapman R, de Wolf F, Hange WP, et al. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. PNAS. 2007;104(44):17441–6.CrossRefPubMed Fraser C, Hollingsworth D, Chapman R, de Wolf F, Hange WP, et al. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. PNAS. 2007;104(44):17441–6.CrossRefPubMed
19.
go back to reference Ganor Y, Zhou Z, Bodo J, Tudor D, Leibowitch J, Mathez D, et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Nature. 2013;6:4. Ganor Y, Zhou Z, Bodo J, Tudor D, Leibowitch J, Mathez D, et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Nature. 2013;6:4.
24.
go back to reference Sebire K, McGavin K, Land S, Middleton T, Birch C. Stability of human immunodeficiency virus RNA in blood specimens as measured by a commercial PCR-based assay. J Clin Microbiol. 1998;36(2):493–8.PubMedPubMedCentral Sebire K, McGavin K, Land S, Middleton T, Birch C. Stability of human immunodeficiency virus RNA in blood specimens as measured by a commercial PCR-based assay. J Clin Microbiol. 1998;36(2):493–8.PubMedPubMedCentral
Metadata
Title
Circumcision status at HIV infection is not associated with plasma viral load in men: analysis of specimens from a randomized controlled trial
Authors
Stephanie M. Davis
Sherri Pals
Chunfu Yang
Elijah Odoyo-June
Joy Chang
Maroya Spalding Walters
Walter Jaoko
Naomi Bock
Larry Westerman
Carlos Toledo
Robert C. Bailey
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3257-8

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue