Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy

Authors: Francesca Carozzi, Donella Puliti, Cristina Ocello, Pasquale Silvio Anastasio, Espedito Antonio Moliterni, Emilia Perinetti, Laurence Serradell, Elena Burroni, Massimo Confortini, Paola Mantellini, Marco Zappa, Géraldine Dominiak-Felden

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

A large free-of-charge quadrivalent HPV (qHPV) vaccination program, covering four cohorts annually (women 11, 14, 17 and 24 years), has been implemented in Basilicata since 2007. This study evaluated vaccine and non-vaccine HPV prevalence 5-7 years post-vaccination program implementation in vaccinated and unvaccinated women.

Methods

This population-based, cross-sectional study was conducted in the public screening centers of the Local Health Unit in Matera between 2012 and 2014. Cervical samples were obtained for Pap and HPV testing (HC2, LiPA Extra® assay) and participants completed a sociodemographic and behavioral questionnaire. Detailed HPV vaccination status was retrieved from the official HPV vaccine registry. HPV prevalence was described overall, by type and vaccination status. The association between HPV type-detection and risk/protective factors was studied. Direct vaccine protection (qHPV vaccine effectiveness [VE]), cross-protection, and type-replacement were evaluated in cohorts eligible for vaccination, by analyzing HPV prevalence of vaccine and non-vaccine types according to vaccination status.

Results

Overall, 2793 women (18-50 years) were included, 1314 of them having been in birth cohorts eligible for the HPV vaccination program (18- to 30-year-old women at enrolment). Among the latter, qHPV vaccine uptake was 59% (at least one dose), with 94% completing the schedule; standardized qHPV type prevalence was 0.6% in vaccinated versus 5.5% in unvaccinated women (P <0.001); adjusted VE against vaccine type infections was 90% (95% CI: 73%-96%) for all fully vaccinated women and 100% (95% CI not calculable) in women vaccinated before sexual debut. No statistically significant difference in overall high-risk HPV, high-risk non-vaccine HPV, or any single non-vaccine type prevalence was observed between vaccinated and unvaccinated women.

Conclusions

These results, conducted in a post-vaccine era, suggest a high qHPV VE and that a well-implemented catch-up vaccination program may be efficient in reducing vaccine-type infections in a real-world setting. No cross-protective effect or evidence of type-replacement was observed a few years after HPV vaccine introduction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Trottier H, Franco EL. Human papillomavirus and cervical cancer: burden of illness and basis for prevention. Am J Manag Care. 2006;12:S462–72.PubMed Trottier H, Franco EL. Human papillomavirus and cervical cancer: burden of illness and basis for prevention. Am J Manag Care. 2006;12:S462–72.PubMed
2.
go back to reference Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005;32:S16–24.CrossRefPubMed Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005;32:S16–24.CrossRefPubMed
3.
go back to reference Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst. 2005;97(14):1072–9.CrossRefPubMed Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst. 2005;97(14):1072–9.CrossRefPubMed
4.
go back to reference de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.CrossRefPubMed de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.CrossRefPubMed
5.
go back to reference Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect Agent Cancer. 2012;7(1):38.CrossRefPubMedPubMedCentral Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect Agent Cancer. 2012;7(1):38.CrossRefPubMedPubMedCentral
7.
go back to reference Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S, et al. Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE) I Investigators. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–43.CrossRefPubMed Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S, et al. Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE) I Investigators. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–43.CrossRefPubMed
8.
go back to reference Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, et al. HPV PATRICIA Study Group. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14.CrossRefPubMed Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, et al. HPV PATRICIA Study Group. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14.CrossRefPubMed
9.
go back to reference Markowitz LE, Tsu V, Deeks SL, Cubie H, Wang SA, Vicari AS, et al. Human papillomavirus vaccine introduction–the first five years. Vaccine. 2012;30(Suppl 5):F139–48.CrossRefPubMed Markowitz LE, Tsu V, Deeks SL, Cubie H, Wang SA, Vicari AS, et al. Human papillomavirus vaccine introduction–the first five years. Vaccine. 2012;30(Suppl 5):F139–48.CrossRefPubMed
10.
go back to reference Romanowski B. Long term protection against cervical infection with the humanpapillomavirus: review of currently available vaccines. Hum Vaccin. 2011;7(2):161–9.CrossRefPubMed Romanowski B. Long term protection against cervical infection with the humanpapillomavirus: review of currently available vaccines. Hum Vaccin. 2011;7(2):161–9.CrossRefPubMed
12.
go back to reference Giambi C, Donati S, Carozzi F, Salmaso S, Declich S, Atti ML, et al. A cross-sectional study to estimate high-risk human papillomavirus prevalence and type distribution in Italian women aged 18–26 years. BMC Infect Dis. 2013;13:74.CrossRefPubMedPubMedCentral Giambi C, Donati S, Carozzi F, Salmaso S, Declich S, Atti ML, et al. A cross-sectional study to estimate high-risk human papillomavirus prevalence and type distribution in Italian women aged 18–26 years. BMC Infect Dis. 2013;13:74.CrossRefPubMedPubMedCentral
13.
go back to reference Ammatuna P, Giovannelli L, Matranga D, Ciriminna S, Perino A. Prevalence of genital human papilloma virus infection and genotypes among young women in Sicily, South Italy. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2002–6.CrossRefPubMed Ammatuna P, Giovannelli L, Matranga D, Ciriminna S, Perino A. Prevalence of genital human papilloma virus infection and genotypes among young women in Sicily, South Italy. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2002–6.CrossRefPubMed
14.
go back to reference Giorgi Rossi P, Bisanzi S, Paganini I, Di Iasi A, Angeloni C, Scalisi A, et al. HPV Prevalence Italian Working Group. Prevalence of HPV high and low risk types in cervical samples from the Italian general population: a population based study. BMC Infect Dis. 2010;10:214.CrossRefPubMedPubMedCentral Giorgi Rossi P, Bisanzi S, Paganini I, Di Iasi A, Angeloni C, Scalisi A, et al. HPV Prevalence Italian Working Group. Prevalence of HPV high and low risk types in cervical samples from the Italian general population: a population based study. BMC Infect Dis. 2010;10:214.CrossRefPubMedPubMedCentral
15.
go back to reference Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine. 2008;19(26 Suppl 10):K1–16.CrossRef Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine. 2008;19(26 Suppl 10):K1–16.CrossRef
16.
go back to reference Ripabelli G, Grasso GM, Del Riccio I, Tamburro M, Sammarco ML. Prevalence and genotype identification of human papillomavirus in women undergoing voluntary cervical cancer screening in Molise, central Italy. Cancer Epidemiol. 2010;34(2):162–7.CrossRefPubMed Ripabelli G, Grasso GM, Del Riccio I, Tamburro M, Sammarco ML. Prevalence and genotype identification of human papillomavirus in women undergoing voluntary cervical cancer screening in Molise, central Italy. Cancer Epidemiol. 2010;34(2):162–7.CrossRefPubMed
17.
go back to reference Masia G, Mazzoleni AP, Contu G, Laconi S, Minerba L, Montixi S, et al. Epidemiology and genotype distribution of human papillomavirus (HPV) in women of Sardinia (Italy). Vaccine. 2009;27(Suppl 1):A11–6.CrossRefPubMed Masia G, Mazzoleni AP, Contu G, Laconi S, Minerba L, Montixi S, et al. Epidemiology and genotype distribution of human papillomavirus (HPV) in women of Sardinia (Italy). Vaccine. 2009;27(Suppl 1):A11–6.CrossRefPubMed
18.
go back to reference Agarossi A, Ferrazzi E, Parazzini F, Perno CF, Ghisoni L. Prevalence and type distribution of high-risk human papillomavirus infection in women undergoing voluntary cervical cancer screening in Italy. J Med Virol. 2009;81(3):529–35.CrossRefPubMed Agarossi A, Ferrazzi E, Parazzini F, Perno CF, Ghisoni L. Prevalence and type distribution of high-risk human papillomavirus infection in women undergoing voluntary cervical cancer screening in Italy. J Med Virol. 2009;81(3):529–35.CrossRefPubMed
19.
go back to reference Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Cummins E, Liu B, et al. Fall in human papillomavirus prevalence following a national vaccination program. J Infect Dis. 2012;206(11):1645–51.CrossRefPubMed Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Cummins E, Liu B, et al. Fall in human papillomavirus prevalence following a national vaccination program. J Infect Dis. 2012;206(11):1645–51.CrossRefPubMed
20.
go back to reference Markowitz LE, Liu G, Hariri S, Steinau M, Dunne EF, Unger ER. Prevalence of HPV after introduction of the vaccination program in the United States. Pediatrics. 2016;137(3):e20151968.CrossRefPubMed Markowitz LE, Liu G, Hariri S, Steinau M, Dunne EF, Unger ER. Prevalence of HPV after introduction of the vaccination program in the United States. Pediatrics. 2016;137(3):e20151968.CrossRefPubMed
21.
go back to reference Haupt RM, Wheeler CM, Brown DR, Garland SM, Ferris DG, Paavonen JA, et al. FUTURE I and II Investigators. Impact of an HPV6/11/16/18 L1 virus-like particle vaccine on progression to cervical intraepithelial neoplasia in seropositive women with HPV16/18 infection. Int J Cancer. 2011;129(11):2632–42.CrossRefPubMed Haupt RM, Wheeler CM, Brown DR, Garland SM, Ferris DG, Paavonen JA, et al. FUTURE I and II Investigators. Impact of an HPV6/11/16/18 L1 virus-like particle vaccine on progression to cervical intraepithelial neoplasia in seropositive women with HPV16/18 infection. Int J Cancer. 2011;129(11):2632–42.CrossRefPubMed
22.
go back to reference Muñoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst. 2010;102(5):325–39.CrossRefPubMed Muñoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst. 2010;102(5):325–39.CrossRefPubMed
23.
go back to reference Castellsagué X, Muñoz N, Pitisuttithum P, Ferris D, Monsonego J, Ault K, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105(1):28–37.CrossRefPubMedPubMedCentral Castellsagué X, Muñoz N, Pitisuttithum P, Ferris D, Monsonego J, Ault K, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105(1):28–37.CrossRefPubMedPubMedCentral
24.
go back to reference Wheeler CM, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J Infect Dis. 2009;199(7):936–44.CrossRefPubMed Wheeler CM, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J Infect Dis. 2009;199(7):936–44.CrossRefPubMed
25.
go back to reference Wheeler CM, Castellsagué X, Garland SM, Szarewski A, Paavonen J, Naud P, et al. HPV PATRICIA Study Group. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13(1):100–10.CrossRefPubMed Wheeler CM, Castellsagué X, Garland SM, Szarewski A, Paavonen J, Naud P, et al. HPV PATRICIA Study Group. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13(1):100–10.CrossRefPubMed
26.
go back to reference Malagón T, Drolet M, Boily MC, Franco EL, Jit M, Brisson J, et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(10):781–9.CrossRefPubMed Malagón T, Drolet M, Boily MC, Franco EL, Jit M, Brisson J, et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(10):781–9.CrossRefPubMed
27.
go back to reference Tota JE, Ramanakumar AV, Jiang M, Dillner J, Walter SD, Kaufman JS, et al. Epidemiologic approaches to evaluating the potential for human papillomavirus type-replacement postvaccination. Am J Epidemiol. 2013;178(4):625–34.CrossRefPubMedPubMedCentral Tota JE, Ramanakumar AV, Jiang M, Dillner J, Walter SD, Kaufman JS, et al. Epidemiologic approaches to evaluating the potential for human papillomavirus type-replacement postvaccination. Am J Epidemiol. 2013;178(4):625–34.CrossRefPubMedPubMedCentral
28.
go back to reference Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Liu B, Bateson D, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination program in Australia: a repeat cross-sectional study. Lancet Infect Dis. 2014t;14(10):958–66.CrossRefPubMed Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Liu B, Bateson D, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination program in Australia: a repeat cross-sectional study. Lancet Infect Dis. 2014t;14(10):958–66.CrossRefPubMed
29.
go back to reference Drolet M, Bénard É, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programs: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80.CrossRefPubMedPubMedCentral Drolet M, Bénard É, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programs: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80.CrossRefPubMedPubMedCentral
30.
go back to reference Kavanagh K, Pollock KG, Potts A, Love J, Cuschieri K, Cubie H, et al. Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. Br J Cancer. 2014;110(11):2804–11.CrossRefPubMedPubMedCentral Kavanagh K, Pollock KG, Potts A, Love J, Cuschieri K, Cubie H, et al. Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. Br J Cancer. 2014;110(11):2804–11.CrossRefPubMedPubMedCentral
31.
go back to reference Mesher D, Soldan K, Lehtinen M, Beddows S, Brisson M, Brotherton JML, et al. Population-level effects of human papillomavirus vaccination programs on infections with nonvaccine genotypes. Emerg Infect Dis. 2016;22(10):1732–40.CrossRefPubMedPubMedCentral Mesher D, Soldan K, Lehtinen M, Beddows S, Brisson M, Brotherton JML, et al. Population-level effects of human papillomavirus vaccination programs on infections with nonvaccine genotypes. Emerg Infect Dis. 2016;22(10):1732–40.CrossRefPubMedPubMedCentral
32.
go back to reference Choi YH, Chapman R, Gay N, Jit M. Potential overestimation of HPV vaccine impact due to unmasking of non-vaccine types: quantification using a multi-type mathematical model. Vaccine. 2012;30(23):3383–8.CrossRefPubMed Choi YH, Chapman R, Gay N, Jit M. Potential overestimation of HPV vaccine impact due to unmasking of non-vaccine types: quantification using a multi-type mathematical model. Vaccine. 2012;30(23):3383–8.CrossRefPubMed
33.
go back to reference Eklund C, Zhou T. Dillner J; WHO Human Papillomavirus Laboratory Network. Global proficiency study of human papillomavirus genotyping. J Clin Microbiol. 2010;48(11):4147–55.CrossRefPubMedPubMedCentral Eklund C, Zhou T. Dillner J; WHO Human Papillomavirus Laboratory Network. Global proficiency study of human papillomavirus genotyping. J Clin Microbiol. 2010;48(11):4147–55.CrossRefPubMedPubMedCentral
34.
go back to reference Eklund C, Forslund O, Wallin KL, Zhou T, Dillner J. WHO Human Papillomavirus Laboratory Network. The 2010 global proficiency study of human papilloma virus genotyping in vaccinology. J Clin Microbiol. 2012;50(7):2289–98.CrossRefPubMedPubMedCentral Eklund C, Forslund O, Wallin KL, Zhou T, Dillner J. WHO Human Papillomavirus Laboratory Network. The 2010 global proficiency study of human papilloma virus genotyping in vaccinology. J Clin Microbiol. 2012;50(7):2289–98.CrossRefPubMedPubMedCentral
35.
go back to reference Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, et al. Broad Spectrum HPV Vaccine Study. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–23.CrossRefPubMed Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, et al. Broad Spectrum HPV Vaccine Study. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–23.CrossRefPubMed
Metadata
Title
Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy
Authors
Francesca Carozzi
Donella Puliti
Cristina Ocello
Pasquale Silvio Anastasio
Espedito Antonio Moliterni
Emilia Perinetti
Laurence Serradell
Elena Burroni
Massimo Confortini
Paola Mantellini
Marco Zappa
Géraldine Dominiak-Felden
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-2945-8

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue