Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Hefei (2014–2015): genetic characteristics of antimicrobial resistance

Authors: Fa-Xing Jiang, Qian Lan, Wen-Jing Le, Xiao-Hong Su

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Antimicrobial resistance (AMR) and genetic determinants of resistance of N. gonorrhoeae isolates from Hefei, China, were characterized adding a breadth of information to the molecular epidemiology of gonococcal resistance in China.

Methods

126 N. gonorrhoeae isolates from a hospital clinic in Hefei, were collected between January, 2014, and November, 2015. The minimum inhibitory concentration (MIC) of N. gonorrhoeae isolates for seven antimicrobials were determined by the agar dilution method. Isolates were tested for mutations in penA and mtrR genes and 23S rRNA, and also genotyped using N. gonorrhoeae multi-antigen sequence typing (NG-MAST).

Results

All N. gonorrhoeae isolates were resistant to ciprofloxacin; 81.7% (103/126) to tetracycline and 73.8% (93/126) to penicillin. 39.7% (50/126) of isolates were penicillinase producing N. gonorrhoeae (PPNG), 31.7% (40/126) were tetracycline resistant N. gonorrhoeae (TRNG) and 28.6% (36/126) were resistant to azithromycin. While not fully resistant to extended spectrum cephalosporins (ESCs), a total of 14 isolates (11.1%) displayed decreased susceptibility to ceftriaxone (MIC ≥ 0.125 mg/L, n = 10), cefixime (MIC ≥ 0. 25 mg/L, n = 1) or to both ESCs (n = 3). penA mosaic alleles XXXV were found in all isolates that harbored decreased susceptibility to cefixime, except for one. Four mutations were found in mtrR genes and mutations A2143G and C2599T were identified in 23S rRNA. No isolates were resistant to spectinomycin. Gonococcal isolates were distributed into diverse NG-MAST sequence types (STs); 86 separate STs were identified.

Conclusions

N. gonorrhoeae isolates from Hefei during 2014–2015, displayed high levels of resistance to antimicrobials that had been recommended previously for treatment of gonorrhea, e.g., penicillin, tetracycline and ciprofloxacin. The prevalence of resistance to azithromycin was also high (28.6%). No isolates were found to be fully resistant to spectinomycin, ceftriaxone or cefixime; however, 11.1% isolates, overall, had decreased susceptibility to ESCs.
Literature
1.
go back to reference Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and Global reporting. PLoS One. 2015;10:e0143304.CrossRefPubMedPubMedCentral Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and Global reporting. PLoS One. 2015;10:e0143304.CrossRefPubMedPubMedCentral
3.
go back to reference Bignell C, Unemo M. European STI Guidelines Editorial Board. 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS. 2013;24:85–92. Bignell C, Unemo M. European STI Guidelines Editorial Board. 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS. 2013;24:85–92.
4.
go back to reference Unemo M. Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis. 2015;15:364.CrossRefPubMedPubMedCentral Unemo M. Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis. 2015;15:364.CrossRefPubMedPubMedCentral
6.
go back to reference Katz AR, Komeya AY, Soge OO, Kiaha MI, Lee MV, Wasserman GM, et al. Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin Infect Dis. 2012;54:841–3. Katz AR, Komeya AY, Soge OO, Kiaha MI, Lee MV, Wasserman GM, et al. Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin Infect Dis. 2012;54:841–3.
7.
go back to reference Stevens K, Zaia A, Tawil S, Bates J, Hicks V, Whiley D, et al. Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Australia. J Antimicrob Chemother. 2015;70:1267–8. Stevens K, Zaia A, Tawil S, Bates J, Hicks V, Whiley D, et al. Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Australia. J Antimicrob Chemother. 2015;70:1267–8.
8.
go back to reference Ni C, Xue J, Zhang C, Zhou H, van der Veen S. High prevalence of Neisseria gonorrhoeae with high-level resistance to azithromycin in Hangzhou. China J Antimicrob Chemother. 2016;71:2355–7.CrossRefPubMed Ni C, Xue J, Zhang C, Zhou H, van der Veen S. High prevalence of Neisseria gonorrhoeae with high-level resistance to azithromycin in Hangzhou. China J Antimicrob Chemother. 2016;71:2355–7.CrossRefPubMed
11.
go back to reference Gu WM, Chen Y, Yang Y, Wu L, Hu WZ, YL J. Twenty-five-year changing pattern of gonococcal antimicrobial susceptibility in Shanghai: surveillance and its impact on treatment guidelines. BMC Infect Dis. 2014;14:731.CrossRefPubMedPubMedCentral Gu WM, Chen Y, Yang Y, Wu L, Hu WZ, YL J. Twenty-five-year changing pattern of gonococcal antimicrobial susceptibility in Shanghai: surveillance and its impact on treatment guidelines. BMC Infect Dis. 2014;14:731.CrossRefPubMedPubMedCentral
12.
go back to reference Cao W, Liang JY, Li XD, Bi C, Yang RD, Liang YH, et al. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated from Guangzhou, China, 2000 to 2005 and 2008 to 2013. Sex Transm Dis. 2015;42:27–9. Cao W, Liang JY, Li XD, Bi C, Yang RD, Liang YH, et al. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated from Guangzhou, China, 2000 to 2005 and 2008 to 2013. Sex Transm Dis. 2015;42:27–9.
13.
go back to reference CLSI: Neisseria gonorrhoeae. In Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute. 2015:80–82. CLSI: Neisseria gonorrhoeae. In Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute. 2015:80–82.
15.
go back to reference Sng EH, Yeo KL, Rajan VS. Simple method for detecting penicillinase-producing Neisseria gonorrhoeae and Staphylococcus aureus. Br J Vener Dis. 1981;57:141–2.PubMedPubMedCentral Sng EH, Yeo KL, Rajan VS. Simple method for detecting penicillinase-producing Neisseria gonorrhoeae and Staphylococcus aureus. Br J Vener Dis. 1981;57:141–2.PubMedPubMedCentral
16.
17.
go back to reference Li S, Su XH, Le WJ, Jiang FX, Wang BX, Rice PA. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from symptomatic men attending the Nanjing sexually transmitted diseases clinic (2011–2012): genetic characteristics of isolates with reduced sensitivity to ceftriaxone. BMC Infect Dis. 2014;14:622.CrossRefPubMedPubMedCentral Li S, Su XH, Le WJ, Jiang FX, Wang BX, Rice PA. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from symptomatic men attending the Nanjing sexually transmitted diseases clinic (2011–2012): genetic characteristics of isolates with reduced sensitivity to ceftriaxone. BMC Infect Dis. 2014;14:622.CrossRefPubMedPubMedCentral
18.
go back to reference Allen VG, Farrell DJ, Rebbapragada A, Tan J, Tijet N, Perusini SJ, et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob Agents Chemother. 2011;55:703–12. Allen VG, Farrell DJ, Rebbapragada A, Tan J, Tijet N, Perusini SJ, et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob Agents Chemother. 2011;55:703–12.
19.
go back to reference Liao M, Gu WM, Yang Y, Dillon JA. Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J Antimicrob Chemother. 2011;66:1016–23.CrossRefPubMed Liao M, Gu WM, Yang Y, Dillon JA. Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J Antimicrob Chemother. 2011;66:1016–23.CrossRefPubMed
20.
go back to reference Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002; 46:3020–5. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002; 46:3020–5.
21.
go back to reference Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis. 2004;189:1497–505.CrossRefPubMed Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis. 2004;189:1497–505.CrossRefPubMed
22.
go back to reference Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob Agents Chemother. 2007;51:3111–6.CrossRefPubMedPubMedCentral Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob Agents Chemother. 2007;51:3111–6.CrossRefPubMedPubMedCentral
23.
go back to reference Martin I, Sawatzky P, Allen V, Hoang L, Lefebvre B, Mina N, et al. Emergence of Neisseria gonorrhoeae isolates with decreased susceptibilities to ceftriaxone and cefixime in Canada : 2001-2010. Sex Transm Dis. 2012;39:316–23. Martin I, Sawatzky P, Allen V, Hoang L, Lefebvre B, Mina N, et al. Emergence of Neisseria gonorrhoeae isolates with decreased susceptibilities to ceftriaxone and cefixime in Canada : 2001-2010. Sex Transm Dis. 2012;39:316–23.
24.
go back to reference Bi P, Tong S, Parton KA. Family self-medication and antibiotics abuse for children and juveniles in a Chinese city. Soc Sci Med. 2000;50:1445–50.CrossRefPubMed Bi P, Tong S, Parton KA. Family self-medication and antibiotics abuse for children and juveniles in a Chinese city. Soc Sci Med. 2000;50:1445–50.CrossRefPubMed
25.
go back to reference Shigemura K, Osawa K, Miura M, Tanaka K, Arakawa S, Shirakawa T, et al. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo Japan. Antimicrob Agents Chemother. 2015;59:2695–9. Shigemura K, Osawa K, Miura M, Tanaka K, Arakawa S, Shirakawa T, et al. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo Japan. Antimicrob Agents Chemother. 2015;59:2695–9.
26.
go back to reference Cobo F, Cabezas-Fernández MT, Cabeza-Barrera MI. Antimicrobial susceptibility and typing of Neisseria gonorrhoeae strains from southern Spain, 2012–2014. Enferm Infecc Microbiol Clín. 2016;34:3–7.CrossRefPubMed Cobo F, Cabezas-Fernández MT, Cabeza-Barrera MI. Antimicrobial susceptibility and typing of Neisseria gonorrhoeae strains from southern Spain, 2012–2014. Enferm Infecc Microbiol Clín. 2016;34:3–7.CrossRefPubMed
27.
go back to reference Xue J, Ni C, Zhou H, Zhang C, van der Veen S. Occurrence of high-level azithromycin-resistant Neisseria gonorrhoeae isolates in China. J Antimicrob Chemother. 2015;70:3404–5.PubMed Xue J, Ni C, Zhou H, Zhang C, van der Veen S. Occurrence of high-level azithromycin-resistant Neisseria gonorrhoeae isolates in China. J Antimicrob Chemother. 2015;70:3404–5.PubMed
28.
go back to reference Liang JY, Cao WL, Li XD, Bi C, Yang RD, Liang YH, et al. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009–2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis. 2016;16:152. Liang JY, Cao WL, Li XD, Bi C, Yang RD, Liang YH, et al. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009–2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis. 2016;16:152.
29.
go back to reference Lynagh Y, Mac Aogáin M, Walsh A, Rogers TR, Unemo M, Crowley B. Detailed characterization of the first high-level azithromycin-resistant Neisseria gonorrhoeae cases in Ireland. J Antimicrob Chemother. 2015;70:2411–3.CrossRefPubMed Lynagh Y, Mac Aogáin M, Walsh A, Rogers TR, Unemo M, Crowley B. Detailed characterization of the first high-level azithromycin-resistant Neisseria gonorrhoeae cases in Ireland. J Antimicrob Chemother. 2015;70:2411–3.CrossRefPubMed
30.
go back to reference Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A, Schaefer U, et al. An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm Infect. 2015;92:365–7. Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A, Schaefer U, et al. An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm Infect. 2015;92:365–7.
31.
go back to reference Bharat A, Demczuk W, Martin I, Mulvey MR. The effect of variants of penicillin-binding protein 2 (PBP2) on cephalosporin and carbapenem susceptibilities in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2015;59:5003–6.CrossRefPubMedPubMedCentral Bharat A, Demczuk W, Martin I, Mulvey MR. The effect of variants of penicillin-binding protein 2 (PBP2) on cephalosporin and carbapenem susceptibilities in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2015;59:5003–6.CrossRefPubMedPubMedCentral
32.
go back to reference Olsen B, Lan PT, Golparian D, Johansson E, Tran HK, Unemo M. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011. BMC Infect Dis. 2013;13:40.CrossRefPubMedPubMedCentral Olsen B, Lan PT, Golparian D, Johansson E, Tran HK, Unemo M. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011. BMC Infect Dis. 2013;13:40.CrossRefPubMedPubMedCentral
33.
go back to reference Whiley DM, Goire N, Lambert SB, Ray S, Limnios EA, Nissen MD, et al. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J Antimicrobial Chemother. 2010;65:1615–8. Whiley DM, Goire N, Lambert SB, Ray S, Limnios EA, Nissen MD, et al. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J Antimicrobial Chemother. 2010;65:1615–8.
34.
go back to reference Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in Europe (France): novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 2012;56:1273–80.CrossRef Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in Europe (France): novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 2012;56:1273–80.CrossRef
35.
go back to reference Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS. First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother. 2016;71:92–9.CrossRefPubMed Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS. First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother. 2016;71:92–9.CrossRefPubMed
Metadata
Title
Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Hefei (2014–2015): genetic characteristics of antimicrobial resistance
Authors
Fa-Xing Jiang
Qian Lan
Wen-Jing Le
Xiao-Hong Su
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2472-z

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.