Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Prevalence and Incidence of Smear-Positive Pulmonary Tuberculosis in the Hetosa District of Arsi Zone, Oromia Regional State of Central Ethiopia

Authors: ShalloDaba Hamusse, Meaza Demissie, Dejene Teshome, Mohammed Suaudi Hassen, Bernt Lindtjørn

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

The real burden of smear-positive (PTB+) and bacteriologically confirmed tuberculosis (BCTB) in Ethiopia is not known. Thus, the aim of this community-based study was to measure the prevalence and incidence of tuberculosis in the Hetosa District of Oromia Region, Ethiopia.

Methods

First, a population-based cross-sectional survey was conducted on a total of 33,073 individuals aged ≥ 15 years to determine the prevalence of PTB+ and BCTB cases. Then, in order to determine the incidence, a prospective follow-up was carried out on 32,800 individuals found to be either free from symptoms suggestive of TB (SSTB) during the baseline survey or had symptoms suggestive of TB but yielded negative bacteriological examination results. We identified 1,041 presumptive TB cases at the baseline survey, and 1,468 in the follow-up study. Each participants with cough of more than two weeks were provided spot and morning sputum samples for acid-fast bacilli sputum microscopy and culture.

Results

At the baseline survey, 43 BCTB cases were identified. Thirty six of these were both smear- and culture-positive while seven were only culture-positive. In the follow-up study, however, 76 BCTB cases were diagnosed and 70 of these were found to be both smear- and culture-positive while six were culture-positive only. The adjusted prevalence of PTB+ and BCTB in the study area was 109 and 132/100,000 persons, respectively. Moreover, the incidences of PTB+ and BCTB were 214 and 232/100,000 persons per year (py), respectively. The ratio of the passive to active case finding was 1:0.96 (45/43). For every TB case identified through the existing passive case diagnosis, there was an almost equal number (0.96) of undiagnosed infectious TB cases in the community. A family history of TB contact was independently associated with a high risk of TB (TB prevalence, AOR, 13; 95% CI: 6.55–15.33) and (TB incidence, aIRR 4.11, 95% CI: 2.18–7.77).

Conclusions and recommendations

The prevalence and incidence of smear-positive and bacteriologically confirmed TB cases were high in the study area. For every case of smear-positive TB receiving treatment, there was an almost equal (0.96) number of undetected infectious bacteriologically confirmed TB case in the community. The high proportion of undetected infectious TB cases in the community could possibly be due to the sub-optimal performance of Directly Observed Treatment Short-course (DOTS) in detecting 70% of infectious TB cases, as well as attaining a cure rate of 85% in the study area. Family history of TB contact has substantaially increased the risk of developing the disease, and there is a need to improve ways of identifying TB cases and intensify mechanisms of tracing contacts among household members of PTB+ cases.
Literature
1.
go back to reference World Health Organization (WHO). Global Tuberculosis report. Geneva: WHO; 2013. World Health Organization (WHO). Global Tuberculosis report. Geneva: WHO; 2013.
2.
go back to reference World Health Organisation (WHO). Global Tuberculosis report. Geneva: WHO; 2015. World Health Organisation (WHO). Global Tuberculosis report. Geneva: WHO; 2015.
3.
go back to reference World Health Organization (WHO). An International Road map for Tuberculosis Research: Towards a world free of tuberculosis. Geneva, Switzerland: WHO; 2011. World Health Organization (WHO). An International Road map for Tuberculosis Research: Towards a world free of tuberculosis. Geneva, Switzerland: WHO; 2011.
4.
go back to reference World Health Organization (WHO). Global tuberculosis control Epidemiology Strategy, Financing. WHO/HTM/TB/2009.426. Geneva, Switzerland: WHO; 2009. World Health Organization (WHO). Global tuberculosis control Epidemiology Strategy, Financing. WHO/HTM/TB/2009.426. Geneva, Switzerland: WHO; 2009.
5.
go back to reference World Health Organization (WHO). Global Tuberculosis report. Geneva: WHO; 2014. World Health Organization (WHO). Global Tuberculosis report. Geneva: WHO; 2014.
6.
go back to reference Dye C, William BG. The population dynamics and control of tuberculosis. Science. 2010;328:856–61.CrossRefPubMed Dye C, William BG. The population dynamics and control of tuberculosis. Science. 2010;328:856–61.CrossRefPubMed
7.
go back to reference Van der Wer MJ, Martin Borgdorff MW. How to measure the prevalence of tuberculosis in a population. Trop Med Int Health. 2007;12:475–84.CrossRef Van der Wer MJ, Martin Borgdorff MW. How to measure the prevalence of tuberculosis in a population. Trop Med Int Health. 2007;12:475–84.CrossRef
8.
go back to reference Sharma R, Jain V, Singh S. Strengthening TB surveillance system in India: Way forward for improving estimates of TB incidence. Lung India. 2011;28:120–3.CrossRefPubMedPubMedCentral Sharma R, Jain V, Singh S. Strengthening TB surveillance system in India: Way forward for improving estimates of TB incidence. Lung India. 2011;28:120–3.CrossRefPubMedPubMedCentral
9.
go back to reference Van Leth F, Van der Werfa MJ, Borgdoff MW. Prevalence of tuberculous infection and incidence of tuberculosis: A re-assessment of the Styblo rule. Bull World Health Organ. 2008;86:20–6.CrossRefPubMedPubMedCentral Van Leth F, Van der Werfa MJ, Borgdoff MW. Prevalence of tuberculous infection and incidence of tuberculosis: A re-assessment of the Styblo rule. Bull World Health Organ. 2008;86:20–6.CrossRefPubMedPubMedCentral
10.
go back to reference Corbett EL, Watt CJ, Walker N, Maher D, Williams BG et al. (2003): The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic: Arch Intern Med: 1009–1021. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG et al. (2003): The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic: Arch Intern Med: 1009–1021.
11.
go back to reference Tedesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. Incidence of smear-positive tuberculosis in Dabat, Northern Ethiopia. Int J Tuberc Lung Dis. 2013;17:630–5.CrossRef Tedesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. Incidence of smear-positive tuberculosis in Dabat, Northern Ethiopia. Int J Tuberc Lung Dis. 2013;17:630–5.CrossRef
12.
go back to reference Deribew A, Abebe G, Apers L, Abdisa A, Deribe F, et al. Prevalence of pulmonary TB and spoligotype pattern of Mycobacterium tuberculosis among Presumtive TB cases in a rural community in Southwest Ethiopia. BMC Infect Dis. 2012;12:54.CrossRefPubMedPubMedCentral Deribew A, Abebe G, Apers L, Abdisa A, Deribe F, et al. Prevalence of pulmonary TB and spoligotype pattern of Mycobacterium tuberculosis among Presumtive TB cases in a rural community in Southwest Ethiopia. BMC Infect Dis. 2012;12:54.CrossRefPubMedPubMedCentral
13.
go back to reference Tadesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. Two-thirds of smear-positive tuberculosis cases in the community were undiagnosed in Northwest Ethiopia: Population-based cross-sectional study. PLoS One. 2011;6:e28258.CrossRefPubMedPubMedCentral Tadesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. Two-thirds of smear-positive tuberculosis cases in the community were undiagnosed in Northwest Ethiopia: Population-based cross-sectional study. PLoS One. 2011;6:e28258.CrossRefPubMedPubMedCentral
14.
go back to reference Shargie EB, Yassin MA, Lindtjorn B. Prevalence of smear-positive pulmonary tuberculosis in a rural district of Ethiopia. Int J Tuberc Lung Dis. 2006;10:87–92.PubMed Shargie EB, Yassin MA, Lindtjorn B. Prevalence of smear-positive pulmonary tuberculosis in a rural district of Ethiopia. Int J Tuberc Lung Dis. 2006;10:87–92.PubMed
15.
go back to reference Shargie EB, Morkve O, Lindtjorn B. Tuberculosis case-finding through a village outreach programme in a rural setting in Southern Ethiopia: Community randomized trial. Bull World Health Organ. 2006;84:112–9.CrossRefPubMedPubMedCentral Shargie EB, Morkve O, Lindtjorn B. Tuberculosis case-finding through a village outreach programme in a rural setting in Southern Ethiopia: Community randomized trial. Bull World Health Organ. 2006;84:112–9.CrossRefPubMedPubMedCentral
16.
go back to reference Demissie M, Zenebere B, Berhane Y, Lindtjorn B. A rapid survey to determine the prevalence of smear-positive tuberculosis in Addis Ababa. Int J Tuberc Lung Dis. 2002;6:580–4.PubMed Demissie M, Zenebere B, Berhane Y, Lindtjorn B. A rapid survey to determine the prevalence of smear-positive tuberculosis in Addis Ababa. Int J Tuberc Lung Dis. 2002;6:580–4.PubMed
17.
go back to reference Tadesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. The Clustering of Smear-Positive Tuberculosis in Dabat,Ethiopia: A Population-based Cross-sectional Study. PLoS One. 2013;8:e65022. http://www.plosone.org.CrossRefPubMedPubMedCentral Tadesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. The Clustering of Smear-Positive Tuberculosis in Dabat,Ethiopia: A Population-based Cross-sectional Study. PLoS One. 2013;8:e65022. http://​www.​plosone.​org.​CrossRefPubMedPubMedCentral
18.
go back to reference Yassin MA, Daniel DG, Olivia T, Markos P, Aschalew M, Shargie EB, et al. Innovative Community-based Approaches Doubled Tuberculosis Case Notification and Improve Treatment Outcome in Southern Ethiopia. PLoS One. 2013;8:e63174.CrossRefPubMedPubMedCentral Yassin MA, Daniel DG, Olivia T, Markos P, Aschalew M, Shargie EB, et al. Innovative Community-based Approaches Doubled Tuberculosis Case Notification and Improve Treatment Outcome in Southern Ethiopia. PLoS One. 2013;8:e63174.CrossRefPubMedPubMedCentral
19.
go back to reference Central Statistics Agency. Ethiopia Population and Housing Census. Addis Ababa, Ethiopia: CSA; 2007. Central Statistics Agency. Ethiopia Population and Housing Census. Addis Ababa, Ethiopia: CSA; 2007.
20.
go back to reference Oromia Regional State Office of the President. Oromia regional state government annual report. Ethiopia: Oromia; 2011. Oromia Regional State Office of the President. Oromia regional state government annual report. Ethiopia: Oromia; 2011.
21.
go back to reference Ministry of Health of Ethiopia (MOH). First Ethiopian National Population-based Tuberculosis Prevalence Survey Addis Ababa, Ethiopia. 2011. Ministry of Health of Ethiopia (MOH). First Ethiopian National Population-based Tuberculosis Prevalence Survey Addis Ababa, Ethiopia. 2011.
22.
go back to reference World Health Organization (WHO). Global Tuberculosis Report. Geneva, Switzerland: WHO; 2012. World Health Organization (WHO). Global Tuberculosis Report. Geneva, Switzerland: WHO; 2012.
23.
go back to reference Ministry of Health of Ethiopia. Health Extension Program in Ethiopia. Addis Ababa, Ethiopia; 2007. Ministry of Health of Ethiopia. Health Extension Program in Ethiopia. Addis Ababa, Ethiopia; 2007.
24.
go back to reference Ministry of Health of Ethiopia (MOH). Tuberculosis, Leprosy and TB/HIV Prevention and Control Programme Manual. 4th ed. Addis Ababa: MOH; 2008. Ministry of Health of Ethiopia (MOH). Tuberculosis, Leprosy and TB/HIV Prevention and Control Programme Manual. 4th ed. Addis Ababa: MOH; 2008.
25.
go back to reference International Union against Tuberculosis and Lung Disease (IUATLD). The Public Health Service National Tuberculosis Referral Laboratory and National Laboratory Network, Minimum Requirement, Role and Opportunity in Low-Income Country. France, Paris: IUATLD; 1998. International Union against Tuberculosis and Lung Disease (IUATLD). The Public Health Service National Tuberculosis Referral Laboratory and National Laboratory Network, Minimum Requirement, Role and Opportunity in Low-Income Country. France, Paris: IUATLD; 1998.
26.
go back to reference World Health Organization (WHO). Tuberculosis Prevalence Surveys: Assessing tuberculosis prevalence through population-based survey, a handbook. 1st ed. Geneva, Switzerland: WHO; 2011. World Health Organization (WHO). Tuberculosis Prevalence Surveys: Assessing tuberculosis prevalence through population-based survey, a handbook. 1st ed. Geneva, Switzerland: WHO; 2011.
27.
go back to reference Berhe G, Enqueselassie F, Hailu E, Mekonnen W, Teklu T et al. (2013): Population-based prevalence survey of tuberculosis in the Tigray region of Ethiopia. BMC Infectious Diseases 13. Berhe G, Enqueselassie F, Hailu E, Mekonnen W, Teklu T et al. (2013): Population-based prevalence survey of tuberculosis in the Tigray region of Ethiopia. BMC Infectious Diseases 13.
28.
go back to reference Law I, Sylavanh P, Bounmala S, Nzabintwali F, Paboriboune P, et al. The first national tuberculosis prevalence survey of Lao PDR (2010–2011). Trop Med Int Health. 2015;20:1146–54.CrossRefPubMed Law I, Sylavanh P, Bounmala S, Nzabintwali F, Paboriboune P, et al. The first national tuberculosis prevalence survey of Lao PDR (2010–2011). Trop Med Int Health. 2015;20:1146–54.CrossRefPubMed
29.
go back to reference Kebede AH, Alebachew Z, Tsegaye F, Lemma E, Abebe A, et al. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010–2011. Int J Tuberc L Dis. 2014;18:635–9.CrossRef Kebede AH, Alebachew Z, Tsegaye F, Lemma E, Abebe A, et al. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010–2011. Int J Tuberc L Dis. 2014;18:635–9.CrossRef
30.
go back to reference Yimer S, Holm-Hansen C, Yimaldu T, Bjune G. Evaluating an active case-finding strategy to identify smear-positive tuberculosis in rural Ethiopia. Int J Tuberc Lung Dis. 2009;13:1399–404.PubMed Yimer S, Holm-Hansen C, Yimaldu T, Bjune G. Evaluating an active case-finding strategy to identify smear-positive tuberculosis in rural Ethiopia. Int J Tuberc Lung Dis. 2009;13:1399–404.PubMed
31.
go back to reference Sebhatu M, Kiflom B, Seyoum M, Kassim N, Negash T, et al. Determining the burden of tuberculosis in Eritrea: A new approach. Bull World Health Organ. 2007;85:593–9.CrossRefPubMedPubMedCentral Sebhatu M, Kiflom B, Seyoum M, Kassim N, Negash T, et al. Determining the burden of tuberculosis in Eritrea: A new approach. Bull World Health Organ. 2007;85:593–9.CrossRefPubMedPubMedCentral
32.
go back to reference Zaman K, Yunus M, Arifeen S, Baqui A, Sack D, et al. Prevalence of sputum smear positive tuberculosis in a rural area in Bangladesh. E pidemiol Infect. 2006;134:1052–9.CrossRef Zaman K, Yunus M, Arifeen S, Baqui A, Sack D, et al. Prevalence of sputum smear positive tuberculosis in a rural area in Bangladesh. E pidemiol Infect. 2006;134:1052–9.CrossRef
34.
go back to reference Subramani R, Radhakrishna S, Frieden T, Kolappan C, Gopi P, et al. Rapid decline in prevalence of pulmonary tuberculosis after DOTS implementation in a rural area of South India. Int J Tuberc Lung Dis. 2008;12:916–20.PubMed Subramani R, Radhakrishna S, Frieden T, Kolappan C, Gopi P, et al. Rapid decline in prevalence of pulmonary tuberculosis after DOTS implementation in a rural area of South India. Int J Tuberc Lung Dis. 2008;12:916–20.PubMed
35.
go back to reference Sarker MS, Rahman M, Yirrell D, Campbell E, Rahman AS, et al. Molecular evidence for polyphyletic origin of human immunodeficiency virus type 1 subtype C in Bangladesh. Virus Res. 2008;135:89–94.CrossRefPubMed Sarker MS, Rahman M, Yirrell D, Campbell E, Rahman AS, et al. Molecular evidence for polyphyletic origin of human immunodeficiency virus type 1 subtype C in Bangladesh. Virus Res. 2008;135:89–94.CrossRefPubMed
36.
go back to reference Bjerrgaard-Andersen M, da Silva ZJ, Ravn P, Ruhwald M, Andersen PL, et al. Tuberculosis burden in an urban population: A cross-sectional tuberculosis survey from Guinea Bissau. BMC Infect Dis. 2010;10:96. doi:10.1186/1471-2334-10-96.CrossRef Bjerrgaard-Andersen M, da Silva ZJ, Ravn P, Ruhwald M, Andersen PL, et al. Tuberculosis burden in an urban population: A cross-sectional tuberculosis survey from Guinea Bissau. BMC Infect Dis. 2010;10:96. doi:10.​1186/​1471-2334-10-96.CrossRef
38.
go back to reference Horie T, Lien L, Tuan LT, Tuan PL, Sakurada S, et al. A survey of tuberculosis prevalence in Hanoi, Vietnam. Int J Tuberc Lung Dis. 2007;11:562–6.PubMed Horie T, Lien L, Tuan LT, Tuan PL, Sakurada S, et al. A survey of tuberculosis prevalence in Hanoi, Vietnam. Int J Tuberc Lung Dis. 2007;11:562–6.PubMed
39.
go back to reference Berhe G, Enquselassie F, Aseffa A. Treatment outcome of smear-positive pulmonary tuberculosis patients in Tigray Region,Northern Ethiopia. BMC Public Health. 2012;12:537.CrossRefPubMedPubMedCentral Berhe G, Enquselassie F, Aseffa A. Treatment outcome of smear-positive pulmonary tuberculosis patients in Tigray Region,Northern Ethiopia. BMC Public Health. 2012;12:537.CrossRefPubMedPubMedCentral
40.
go back to reference Pronyk PM, Joshi B, Hargreaves JR. Active case finding: Understanding the burden of tuberculosis in rural South Africa. Int J Tuberc Lung Dis. 2001;5:611–8.PubMed Pronyk PM, Joshi B, Hargreaves JR. Active case finding: Understanding the burden of tuberculosis in rural South Africa. Int J Tuberc Lung Dis. 2001;5:611–8.PubMed
41.
go back to reference Hamusse S, Demissie M, Lindtjorn B. Trends in TB Case Notification over Fifteen Years: The case notification of 25 Districts of the Arsi Zone of Oromia Regional State, Central Ethiopia. BMC Public Health. 2014;14:304. http://www.biomedcentral.com/1471-2458/14/304.CrossRefPubMedPubMedCentral Hamusse S, Demissie M, Lindtjorn B. Trends in TB Case Notification over Fifteen Years: The case notification of 25 Districts of the Arsi Zone of Oromia Regional State, Central Ethiopia. BMC Public Health. 2014;14:304. http://​www.​biomedcentral.​com/​1471-2458/​14/​304.​CrossRefPubMedPubMedCentral
42.
go back to reference Hamusse S, Demissie M, Teshome D, Lindtjørn B. Fifteen-year trend in treatment outcomes among patients with pulmonary smear-positive tuberculosis and its determinants in the Arsi Zone, Central Ethiopia. Glob Health Action. 2014;7:25382. http://dx.doi.org/10.3402/gha.v7.25382.CrossRefPubMed Hamusse S, Demissie M, Teshome D, Lindtjørn B. Fifteen-year trend in treatment outcomes among patients with pulmonary smear-positive tuberculosis and its determinants in the Arsi Zone, Central Ethiopia. Glob Health Action. 2014;7:25382. http://​dx.​doi.​org/​10.​3402/​gha.​v7.​25382.​CrossRefPubMed
43.
go back to reference Keshavje S, Farmer PE. Tuberculosis Drug Resistance and the History of Modern Medicine. NEJ M. 2012;367:931–6.CrossRef Keshavje S, Farmer PE. Tuberculosis Drug Resistance and the History of Modern Medicine. NEJ M. 2012;367:931–6.CrossRef
44.
go back to reference Hamid Salim MA, Declercq E, Van Deun A, Saki KA. Gender differences in tuberculosis: A prevalence survey done in Bangladesh. Int J Tuberc Lung Dis. 2004;8:952–7.PubMed Hamid Salim MA, Declercq E, Van Deun A, Saki KA. Gender differences in tuberculosis: A prevalence survey done in Bangladesh. Int J Tuberc Lung Dis. 2004;8:952–7.PubMed
45.
go back to reference Smith A, Claassens M, AylesH G-FPNB. Health care workers’ gender bias in testing could contribute to missed tuberculosis among women in South Africa. IJTLD. 2016;20:350–6.CrossRef Smith A, Claassens M, AylesH G-FPNB. Health care workers’ gender bias in testing could contribute to missed tuberculosis among women in South Africa. IJTLD. 2016;20:350–6.CrossRef
46.
go back to reference Fox GJ, Nhung NV, Sy DN, Lien LT,Cuong NK et al. (2012):Contact Investigation in Households of Patients withTuberculosis in Hanoi, Vietnam: A Prospective Cohort Study Plos NOE, http://dx.doi.org/10.1371/journal.pone.0049880. Fox GJ, Nhung NV, Sy DN, Lien LT,Cuong NK et al. (2012):Contact Investigation in Households of Patients withTuberculosis in Hanoi, Vietnam: A Prospective Cohort Study Plos NOE, http://​dx.​doi.​org/​10.​1371/​journal.​pone.​0049880.
47.
go back to reference Lienhardt C, Fielding K, Sillah JS, Bah B, Gustafson P, et al. Investigation of the risk factors for tuberculosis: A case–control study in three countries in West Africa. Int J Epidemiol. 2005;34:914–23.CrossRefPubMed Lienhardt C, Fielding K, Sillah JS, Bah B, Gustafson P, et al. Investigation of the risk factors for tuberculosis: A case–control study in three countries in West Africa. Int J Epidemiol. 2005;34:914–23.CrossRefPubMed
48.
go back to reference Woldesemayat EM, Daniel DG, Lindtjørn B. Use of biomass fuel in households is not a risk factor for pulmonary tuberculosis in South Ethiopia. Int J Tuberc Lung Dis. 2014;18:67–72.CrossRefPubMed Woldesemayat EM, Daniel DG, Lindtjørn B. Use of biomass fuel in households is not a risk factor for pulmonary tuberculosis in South Ethiopia. Int J Tuberc Lung Dis. 2014;18:67–72.CrossRefPubMed
49.
go back to reference Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Infect Dis. 2008;8:359–68.CrossRefPubMed Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Infect Dis. 2008;8:359–68.CrossRefPubMed
51.
go back to reference Abubakar I, Crofts JP, Gelb D, Story A, Andrews N, Watson JM. Investigating urban–rural disparities in tuberculosis treatment outcome in England and Wales. Epidemiol Infect. 2008;136:122–7.CrossRefPubMed Abubakar I, Crofts JP, Gelb D, Story A, Andrews N, Watson JM. Investigating urban–rural disparities in tuberculosis treatment outcome in England and Wales. Epidemiol Infect. 2008;136:122–7.CrossRefPubMed
52.
go back to reference Mishra VK, Retheford RD, Smith KR. Biomass Cooking Fuels and Prevalence of Tuberculosis in India. Int J Infect Dis. 1999;3:119–29.CrossRefPubMed Mishra VK, Retheford RD, Smith KR. Biomass Cooking Fuels and Prevalence of Tuberculosis in India. Int J Infect Dis. 1999;3:119–29.CrossRefPubMed
53.
go back to reference Pronyk PM, Kahn K, Tollman TS. Using health and demographic surveillance to understand the burden of disease in populations: The case of tuberculosis in rural South Africa. Scand J Public Health. 2007;35:45–51.CrossRef Pronyk PM, Kahn K, Tollman TS. Using health and demographic surveillance to understand the burden of disease in populations: The case of tuberculosis in rural South Africa. Scand J Public Health. 2007;35:45–51.CrossRef
54.
go back to reference Gustafson P, Gomes VF, Vieira CS. Tuberculosis in Bissau: Incidence and risk factors in an urban community in sub-Saharan Africa. Int J Epidemiol. 2004;33:163–72.CrossRefPubMed Gustafson P, Gomes VF, Vieira CS. Tuberculosis in Bissau: Incidence and risk factors in an urban community in sub-Saharan Africa. Int J Epidemiol. 2004;33:163–72.CrossRefPubMed
55.
go back to reference Hamusse S, Teshome D, Hussen M, Demissie M, Lindtjorn B. Primary and secondary anti-tuberculosis drug resistance in Hitossa District of Arsi Zone, Oromia Regional State, Central Ethiopia. BMC Public Health. 2016;16:593.CrossRefPubMedPubMedCentral Hamusse S, Teshome D, Hussen M, Demissie M, Lindtjorn B. Primary and secondary anti-tuberculosis drug resistance in Hitossa District of Arsi Zone, Oromia Regional State, Central Ethiopia. BMC Public Health. 2016;16:593.CrossRefPubMedPubMedCentral
Metadata
Title
Prevalence and Incidence of Smear-Positive Pulmonary Tuberculosis in the Hetosa District of Arsi Zone, Oromia Regional State of Central Ethiopia
Authors
ShalloDaba Hamusse
Meaza Demissie
Dejene Teshome
Mohammed Suaudi Hassen
Bernt Lindtjørn
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2321-0

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine