Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | TECHNICAL ADVANCE

A framework for evaluating epidemic forecasts

Authors: Farzaneh Sadat Tabataba, Prithwish Chakraborty, Naren Ramakrishnan, Srinivasan Venkatramanan, Jiangzhuo Chen, Bryan Lewis, Madhav Marathe

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Over the past few decades, numerous forecasting methods have been proposed in the field of epidemic forecasting. Such methods can be classified into different categories such as deterministic vs. probabilistic, comparative methods vs. generative methods, and so on. In some of the more popular comparative methods, researchers compare observed epidemiological data from the early stages of an outbreak with the output of proposed models to forecast the future trend and prevalence of the pandemic. A significant problem in this area is the lack of standard well-defined evaluation measures to select the best algorithm among different ones, as well as for selecting the best possible configuration for a particular algorithm.

Results

In this paper we present an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts. We describe the various epidemic features (Epi-features) included to characterize the output of forecasting methods and provide suitable error measures that could be used to evaluate the accuracy of the methods with respect to these Epi-features. We focus on long-term predictions rather than short-term forecasting and demonstrate the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States. Our results demonstrate that different error measures lead to different rankings even for a single Epi-feature. Further, our experimental analyses show that no single method dominates the rest in predicting all Epi-features when evaluated across error measures. As an alternative, we provide various Consensus Ranking schema that summarize individual rankings, thus accounting for different error measures. Since each Epi-feature presents a different aspect of the epidemic, multiple methods need to be combined to provide a comprehensive forecast. Thus we call for a more nuanced approach while evaluating epidemic forecasts and we believe that a comprehensive evaluation framework, as presented in this paper, will add value to the computational epidemiology community.
Appendix
Available only for authorised users
Literature
3.
go back to reference Stock J. Forecasting Economic Time Series In: Baltagi B, editor. Companion in Theoretical Econometrics. Malden: Basil Blackwell: 2001. p. 562–84. Stock J. Forecasting Economic Time Series In: Baltagi B, editor. Companion in Theoretical Econometrics. Malden: Basil Blackwell: 2001. p. 562–84.
5.
6.
go back to reference Kumar N, Jha GK. A time series ann approach for weather forecasting. Int J Control Theory Comput Model (IJCTCM). 2013; 3(1):19–25.CrossRef Kumar N, Jha GK. A time series ann approach for weather forecasting. Int J Control Theory Comput Model (IJCTCM). 2013; 3(1):19–25.CrossRef
13.
go back to reference Makridakis S, Chatfield C, Hibon M, Lawrence M, Mills T, Ord K, Simmons LF. The M2-competition: A real-time judgmentally based forecasting study. Int J Forecast. 1993; 9(1):5–22. doi:10.1016/0169- 2070(93)90044-N.CrossRef Makridakis S, Chatfield C, Hibon M, Lawrence M, Mills T, Ord K, Simmons LF. The M2-competition: A real-time judgmentally based forecasting study. Int J Forecast. 1993; 9(1):5–22. doi:10.1016/0169- 2070(93)90044-N.CrossRef
14.
go back to reference Makridakis S. The M3-Competition : results, conclusions and implications. Int J Forecast. 2000; 16:451–76.CrossRef Makridakis S. The M3-Competition : results, conclusions and implications. Int J Forecast. 2000; 16:451–76.CrossRef
16.
go back to reference Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV. A systematic review of studies on forecasting the dynamics of influenza outbreaks,. Influenza Other Respir Viruses. 2014; 8:309–16. doi:10.1111/irv.12226. Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV. A systematic review of studies on forecasting the dynamics of influenza outbreaks,. Influenza Other Respir Viruses. 2014; 8:309–16. doi:10.​1111/​irv.​12226.
17.
go back to reference Viboud C, Boëlle PY, Carrat F, Valleron AJ, Flahault A. Prediction of the Spread of Influenza Epidemics by the Method of Analogues. Am J Epidemiol. 2003; 158(10):996–1006. doi:10.1093/aje/kwg239. Viboud C, Boëlle PY, Carrat F, Valleron AJ, Flahault A. Prediction of the Spread of Influenza Epidemics by the Method of Analogues. Am J Epidemiol. 2003; 158(10):996–1006. doi:10.​1093/​aje/​kwg239.
19.
go back to reference Jiang X, Wallstrom G, Cooper GF, Wagner MM. Bayesian prediction of an epidemic curve. J Biomed Inform. 2009; 42(1):90–9. doi:10.1016/j.jbi.2008.05.013.CrossRefPubMed Jiang X, Wallstrom G, Cooper GF, Wagner MM. Bayesian prediction of an epidemic curve. J Biomed Inform. 2009; 42(1):90–9. doi:10.1016/j.jbi.2008.05.013.CrossRefPubMed
20.
go back to reference Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS ONE. 2010; 5(3):1–10. doi:10.1371/journal.pone.0009450.CrossRef Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS ONE. 2010; 5(3):1–10. doi:10.1371/journal.pone.0009450.CrossRef
21.
go back to reference Cha S-H. Comprehensive survey on distance/similarity measures between probability density functions. Intl J Math Models Methods Appl Sci. 2007; 1(4):300–7. doi:10.1007/s00167-009-0884-z. Cha S-H. Comprehensive survey on distance/similarity measures between probability density functions. Intl J Math Models Methods Appl Sci. 2007; 1(4):300–7. doi:10.1007/s00167-009-0884-z.
22.
go back to reference Longini IM, Fine PE, Thacker SB. Predicting the global spread of new infectious agents. Am J Epidemiol. 1986; 123(3):383–91.CrossRefPubMed Longini IM, Fine PE, Thacker SB. Predicting the global spread of new infectious agents. Am J Epidemiol. 1986; 123(3):383–91.CrossRefPubMed
23.
go back to reference Chao DL, Matrajt L, Basta NE, Sugimoto JD, Dean B, Bagwell DA, Oiulfstad B, Halloran ME, Longini IM. Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States. Am J Epidemiol. 2011; 173(10):1121–30. doi:10.1093/aje/kwq497.CrossRefPubMedPubMedCentral Chao DL, Matrajt L, Basta NE, Sugimoto JD, Dean B, Bagwell DA, Oiulfstad B, Halloran ME, Longini IM. Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States. Am J Epidemiol. 2011; 173(10):1121–30. doi:10.1093/aje/kwq497.CrossRefPubMedPubMedCentral
24.
go back to reference Hall IM, Gani R, Hughes HE, Leach S. Real-time epidemic forecasting for pandemic influenza. Epidemiol Infection. 2007; 135:372–85. doi:10.1017/S0950268806007084.CrossRef Hall IM, Gani R, Hughes HE, Leach S. Real-time epidemic forecasting for pandemic influenza. Epidemiol Infection. 2007; 135:372–85. doi:10.1017/S0950268806007084.CrossRef
25.
go back to reference Ong JBS, Chen MI-C, Cook AR, Lee HC, Lee VJ, Lin RTP, Tambyah PA, Goh LG. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PloS ONE. 2010; 5(4):10036. doi:10.1371/journal.pone.0010036.CrossRef Ong JBS, Chen MI-C, Cook AR, Lee HC, Lee VJ, Lin RTP, Tambyah PA, Goh LG. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PloS ONE. 2010; 5(4):10036. doi:10.1371/journal.pone.0010036.CrossRef
26.
go back to reference Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 2012; 10:165. doi:10.1186/1741-7015-10-165.CrossRefPubMedPubMedCentral Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 2012; 10:165. doi:10.1186/1741-7015-10-165.CrossRefPubMedPubMedCentral
27.
go back to reference Towers S, Feng Z. Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bull. 2009; 14(41):19358. Towers S, Feng Z. Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bull. 2009; 14(41):19358.
29.
go back to reference Andersson E, Kühlmann-Berenzon S, Linde A, Schiöler L, Rubinova S, Frisén M. Predictions by early indicators of the time and height of the peaks of yearly influenza outbreaks in Sweden. Scand J Public Health. 2008; 36(5):475–82. doi:10.1177/1403494808089566. Andersson E, Kühlmann-Berenzon S, Linde A, Schiöler L, Rubinova S, Frisén M. Predictions by early indicators of the time and height of the peaks of yearly influenza outbreaks in Sweden. Scand J Public Health. 2008; 36(5):475–82. doi:10.​1177/​1403494808089566​.
38.
go back to reference Armstrong BJS, Collopy F. Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons By J. Scott Armstrong and Fred Collopy Reprinted with permission form. Int J Forecast. 1992; 8(1):69–80. doi:10.1016/0169-2070(92)90008-W. Armstrong BJS, Collopy F. Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons By J. Scott Armstrong and Fred Collopy Reprinted with permission form. Int J Forecast. 1992; 8(1):69–80. doi:10.​1016/​0169-2070(92)90008-W.
40.
go back to reference Abou-Moustafa KT, Ferrie FP. A note on metric properties for some divergence measures: The Gaussian case. J Mach Learn Res. 2012; 25:1–15. Abou-Moustafa KT, Ferrie FP. A note on metric properties for some divergence measures: The Gaussian case. J Mach Learn Res. 2012; 25:1–15.
43.
go back to reference Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, evich Kamaev VA. A survey of forecast error measures. World Appl Sci J. 2013; 24(24):171–6. doi:10.5829/idosi.wasj.2013.24.itmies.80032. Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, evich Kamaev VA. A survey of forecast error measures. World Appl Sci J. 2013; 24(24):171–6. doi:10.5829/idosi.wasj.2013.24.itmies.80032.
44.
go back to reference Syntetos AA, Boylan JE. On the variance of intermittent demand estimates. Int J Prod Econ. 2010; 128(2):546–55. doi:10.1016/j.ijpe.2010.07.005.CrossRef Syntetos AA, Boylan JE. On the variance of intermittent demand estimates. Int J Prod Econ. 2010; 128(2):546–55. doi:10.1016/j.ijpe.2010.07.005.CrossRef
Metadata
Title
A framework for evaluating epidemic forecasts
Authors
Farzaneh Sadat Tabataba
Prithwish Chakraborty
Naren Ramakrishnan
Srinivasan Venkatramanan
Jiangzhuo Chen
Bryan Lewis
Madhav Marathe
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2365-1

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue