Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan

Authors: Shuji Hatakeyama, Yuki Ohama, Mitsuhiro Okazaki, Yoko Nukui, Kyoji Moriya

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Difficult-to-treat infections caused by rapidly growing mycobacteria (RGM) are increasingly observed in clinical settings. However, studies on antimicrobial susceptibilities and effective treatments against RGM in Japan are limited.

Methods

We conducted susceptibility testing of potential antimicrobial agents, including tigecycline and tebipenem, against RGM. Clinical RGM isolates were collected from a university hospital in Japan between December 2010 and August 2013. They were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the sequencing of 16S rRNA, rpoB, and hsp65 genes. The samples were utilized for susceptibility testing using 16 antimicrobials, with frozen broth microdilution panels.

Results

Forty-two isolates were obtained: 13, Mycobacterium abscessus complex; 12, Mycobacterium chelonae; 9, Mycobacterium fortuitum; and 8, M. fortuitum group species other than M. fortuitum. Different antimicrobial susceptibility patterns were observed between RGM species. Clarithromycin-susceptible strain rates were determined to be 0, 62, and 100% for M. fortuitum, M. abscessus complex, and M. chelonae, respectively. M. abscessus complex (100%) and >80% M. chelonae isolates were non-susceptible, while 100% M. fortuitum group isolates were susceptible to moxifloxacin. Linezolid showed good activity against 77% M. abscessus complex, 89% M. fortuitum, and 100% M. chelonae isolates. Regardless of species, all tested isolates were inhibited by tigecycline at very low minimal inhibitory concentrations (MICs) of ≤0.5 μg/mL. MICs of tebipenem, an oral carbapenem, were ≤4 μg/mL against all M. fortuitum group isolates.

Conclusions

Our study demonstrates the importance of correct identification and antimicrobial susceptibility testing, including the testing of potential new agents, in the management of RGM infections.
Literature
1.
go back to reference De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dis. 2006;42(12):1756–63.CrossRefPubMed De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dis. 2006;42(12):1756–63.CrossRefPubMed
2.
go back to reference Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace Jr RJ. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother. 2006;50(10):3476–8.CrossRefPubMedPubMedCentral Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace Jr RJ. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother. 2006;50(10):3476–8.CrossRefPubMedPubMedCentral
3.
go back to reference Howard ST. Recent progress towards understanding genetic variation in the Mycobacterium abscessus complex. Tuberculosis. 2013;93(Suppl):S15–20.CrossRefPubMed Howard ST. Recent progress towards understanding genetic variation in the Mycobacterium abscessus complex. Tuberculosis. 2013;93(Suppl):S15–20.CrossRefPubMed
4.
go back to reference Lamy B, Marchandin H, Hamitouche K, Laurent F. Mycobacterium setense sp. nov., a Mycobacterium fortuitum-group organism isolated from a patient with soft tissue infection and osteitis. Int J Syst Evol Microbiol. 2008;58(Pt 2):486–90.CrossRefPubMed Lamy B, Marchandin H, Hamitouche K, Laurent F. Mycobacterium setense sp. nov., a Mycobacterium fortuitum-group organism isolated from a patient with soft tissue infection and osteitis. Int J Syst Evol Microbiol. 2008;58(Pt 2):486–90.CrossRefPubMed
5.
go back to reference Mediavilla-Gradolph MC, De Toro-Peinado I, Bermudez-Ruiz MP, Garcia-Martinez Mde L, Ortega-Torres M, Montiel Quezel-Guerraz N, et al. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens. Biomed Res Int. 2015;2015:854078.CrossRefPubMedPubMedCentral Mediavilla-Gradolph MC, De Toro-Peinado I, Bermudez-Ruiz MP, Garcia-Martinez Mde L, Ortega-Torres M, Montiel Quezel-Guerraz N, et al. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens. Biomed Res Int. 2015;2015:854078.CrossRefPubMedPubMedCentral
6.
go back to reference Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53(4):1367–76.CrossRefPubMedPubMedCentral Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53(4):1367–76.CrossRefPubMedPubMedCentral
7.
go back to reference Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186(9):917–25.CrossRefPubMed Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186(9):917–25.CrossRefPubMed
8.
go back to reference Doan TL, Fung HB, Mehta D, Riska PF. Tigecycline: a glycylcycline antimicrobial agent. Clin Ther. 2006;28(8):1079–106.CrossRefPubMed Doan TL, Fung HB, Mehta D, Riska PF. Tigecycline: a glycylcycline antimicrobial agent. Clin Ther. 2006;28(8):1079–106.CrossRefPubMed
9.
go back to reference Wallace Jr RJ, Brown-Elliott BA, Crist CJ, Mann L, Wilson RW. Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother. 2002;46(10):3164–7.CrossRefPubMed Wallace Jr RJ, Brown-Elliott BA, Crist CJ, Mann L, Wilson RW. Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother. 2002;46(10):3164–7.CrossRefPubMed
10.
go back to reference Huang YC, Liu MF, Shen GH, Lin CF, Kao CC, Liu PY, et al. Clinical outcome of Mycobacterium abscessus infection and antimicrobial susceptibility testing. J Microbiol Immunol Infect. 2010;43(5):401–6.CrossRefPubMed Huang YC, Liu MF, Shen GH, Lin CF, Kao CC, Liu PY, et al. Clinical outcome of Mycobacterium abscessus infection and antimicrobial susceptibility testing. J Microbiol Immunol Infect. 2010;43(5):401–6.CrossRefPubMed
11.
go back to reference Cavusoglu C, Gurpinar T, Ecemis T. Evaluation of antimicrobial susceptibilities of rapidly growing mycobacteria by Sensititre RAPMYCO panel. New Microbiol. 2012;35(1):73–6.PubMed Cavusoglu C, Gurpinar T, Ecemis T. Evaluation of antimicrobial susceptibilities of rapidly growing mycobacteria by Sensititre RAPMYCO panel. New Microbiol. 2012;35(1):73–6.PubMed
12.
go back to reference Huang CW, Chen JH, Hu ST, Huang WC, Lee YC, Huang CC, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents. 2013;41(3):218–23.CrossRefPubMed Huang CW, Chen JH, Hu ST, Huang WC, Lee YC, Huang CC, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents. 2013;41(3):218–23.CrossRefPubMed
13.
go back to reference Kim SY, Kim CK, Bae IK, Jeong SH, Yim JJ, Jung JY, et al. The drug susceptibility profile and inducible resistance to macrolides of Mycobacterium abscessus and Mycobacterium massiliense in Korea. Diagn Microbiol Infect Dis. 2015;81(2):107–11.CrossRefPubMed Kim SY, Kim CK, Bae IK, Jeong SH, Yim JJ, Jung JY, et al. The drug susceptibility profile and inducible resistance to macrolides of Mycobacterium abscessus and Mycobacterium massiliense in Korea. Diagn Microbiol Infect Dis. 2015;81(2):107–11.CrossRefPubMed
14.
go back to reference Pang H, Li G, Zhao X, Liu H, Wan K, Yu P. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China. Biomed Res Int. 2015;2015:419392.PubMedPubMedCentral Pang H, Li G, Zhao X, Liu H, Wan K, Yu P. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China. Biomed Res Int. 2015;2015:419392.PubMedPubMedCentral
15.
go back to reference Horita Y, Maeda S, Kazumi Y, Doi N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with beta-lactamase inhibitors. Antimicrob Agents Chemother. 2014;58(11):7010–4.CrossRefPubMedPubMedCentral Horita Y, Maeda S, Kazumi Y, Doi N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with beta-lactamase inhibitors. Antimicrob Agents Chemother. 2014;58(11):7010–4.CrossRefPubMedPubMedCentral
16.
go back to reference CLSI. Susceptibility testing of Mycobacteria, Nocardia, and other aerobic actinomycetes; Approved Standard–Second edition. CLSI document M24-A2. Wayne: Clinical and Laboratory Standards Institute; 2011. CLSI. Susceptibility testing of Mycobacteria, Nocardia, and other aerobic actinomycetes; Approved Standard–Second edition. CLSI document M24-A2. Wayne: Clinical and Laboratory Standards Institute; 2011.
17.
go back to reference Petrini B. Mycobacterium abscessus: an emerging rapid-growing potential pathogen. APMIS. 2006;114(5):319–28.CrossRefPubMed Petrini B. Mycobacterium abscessus: an emerging rapid-growing potential pathogen. APMIS. 2006;114(5):319–28.CrossRefPubMed
18.
go back to reference Wallace Jr RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.CrossRefPubMedPubMedCentral Wallace Jr RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.CrossRefPubMedPubMedCentral
19.
go back to reference Nash KA, Zhang Y, Brown-Elliott BA, Wallace Jr RJ. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005;55(2):170–7.CrossRefPubMed Nash KA, Zhang Y, Brown-Elliott BA, Wallace Jr RJ. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005;55(2):170–7.CrossRefPubMed
20.
go back to reference Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183(3):405–10.CrossRefPubMed Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183(3):405–10.CrossRefPubMed
21.
go back to reference Esteban J, Martin-de-Hijas NZ, Garcia-Almeida D, Bodas-Sanchez A, Gadea I, Fernandez-Roblas R. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect. 2009;15:919–23.CrossRefPubMed Esteban J, Martin-de-Hijas NZ, Garcia-Almeida D, Bodas-Sanchez A, Gadea I, Fernandez-Roblas R. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect. 2009;15:919–23.CrossRefPubMed
Metadata
Title
Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan
Authors
Shuji Hatakeyama
Yuki Ohama
Mitsuhiro Okazaki
Yoko Nukui
Kyoji Moriya
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2298-8

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue