Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting

Authors: Rajika Lasanthi Dewasurendra, Janaka Nandana Dias, Nuno Sepulveda, Geethika Sharmini Abayaweera Gunawardena, Naduviladath Chandrasekharan, Chris Drakeley, Nadira Dharshani Karunaweera

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Sri Lanka achieved the WHO certificate as a malaria free country in September 2016, thus monitoring of malaria transmission using sensitive and effective tools is an important need. Use of age-specific antibody prevalence as a serological tool to predict transmission intensity is proven to be a cost effective and reliable method under elimination settings. This paper discusses the correlation of four anti-malarial antibodies against vivax and falciparum malaria with the declining transmission intensities in two previously high malaria endemic districts i.e. Kurunegala and Moneragala of Sri Lanka.

Methods

Sera was collected from 1,186 individuals from the two districts and were subjected to standard ELISA together with control sera from non-immune individuals to obtain Optical Density (OD) values for four anti-malarial antibodies i.e. anti-MSP1 and anti-AMA1 for both Plasmodium vivax and Plasmodium falciparum. The sero-positive samples were determined as mean OD + 3SD of the negative controls. The sero-prevalence was analyzed against the demographic characteristics of the population. A simple reversible catalytic model was fitted into sero-prevalence data to predict the sero-conversion and sero-reversion rates.

Results

Over 60% of the population was sero-positive for one or more antibodies except young children (<10 years). The sero-prevalence was zero in young children and very low in young adults when compared to the older age groups. The model developed for falciparum malaria that assumed the presence of a change in transmission was not significant in the Kurunegala district although significant reduction in transmission was observed when the model was used for P. vivax antibody data in that district. In Moneragala district however, all the serological markers indicated a change in transmission that has occurred approximately 15 years ago.

Conclusions

Assessment of MSP1 and AMA1 anti-malarial antibodies of P. vivax and P. falciparum proved to be useful indicators in predicting transmission under elimination settings as prevailed in Sri Lanka. The sero-conversion rates for the two districts studied are shown to be very low or zero indicating the absence of active and/or hidden transmission confirming a “true” state of elimination at least, in the two study districts in Sri Lanka.
Appendix
Available only for authorised users
Literature
2.
go back to reference Karunaweera ND, Galappaththy GN, Wirth DF. On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malar J. 2014;13(1):59.CrossRefPubMedPubMedCentral Karunaweera ND, Galappaththy GN, Wirth DF. On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malar J. 2014;13(1):59.CrossRefPubMedPubMedCentral
4.
go back to reference Cook J, Reid H, Ivaro J, Kuwahata M, Taleo G, Clements A, et al. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J. 2010;9:169. Cook J, Reid H, Ivaro J, Kuwahata M, Taleo G, Clements A, et al. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J. 2010;9:169.
5.
go back to reference Corran PH, Coleman P, Riley EM, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol. 2007;23(12):575–82.CrossRefPubMed Corran PH, Coleman P, Riley EM, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol. 2007;23(12):575–82.CrossRefPubMed
6.
go back to reference Abeysinghe RR, Galappaththy GNL, Gueye CS, Kahn JG, Feachem RGA, Abeyasinghe RR, et al. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS One. 2012;7(8):e43162.CrossRef Abeysinghe RR, Galappaththy GNL, Gueye CS, Kahn JG, Feachem RGA, Abeyasinghe RR, et al. Malaria control and elimination in Sri Lanka: documenting progress and success factors in a conflict setting. PLoS One. 2012;7(8):e43162.CrossRef
8.
go back to reference Rajakaruna RS, Alifrangis M, Amerasinghe PH, Konradsen F. Pre-elimination stage of malaria in Sri Lanka: assessing the level of hidden parasites in the population. Malar J. 2010;9:25.CrossRefPubMedPubMedCentral Rajakaruna RS, Alifrangis M, Amerasinghe PH, Konradsen F. Pre-elimination stage of malaria in Sri Lanka: assessing the level of hidden parasites in the population. Malar J. 2010;9:25.CrossRefPubMedPubMedCentral
9.
go back to reference Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, et al. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLOS One. 2009;4:6. Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, et al. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLOS One. 2009;4:6.
11.
go back to reference Cunha MG, Silva ES, Sepulveda N, Costa APT, Saboia TC, Guerreiro JF, et al. Serologically defined variations in malaria endemicity in Para State, Brazil. PLoS One. 2014;9:11. Cunha MG, Silva ES, Sepulveda N, Costa APT, Saboia TC, Guerreiro JF, et al. Serologically defined variations in malaria endemicity in Para State, Brazil. PLoS One. 2014;9:11.
12.
go back to reference Bruce-Chwatt LJ, Draper CC, Konfortion P. Seroepidemiological evidence of eradication of malaria from mauritius. Lancet. 1973;2(7828):547–51.CrossRefPubMed Bruce-Chwatt LJ, Draper CC, Konfortion P. Seroepidemiological evidence of eradication of malaria from mauritius. Lancet. 1973;2(7828):547–51.CrossRefPubMed
13.
go back to reference Bruce-Chwatt LJ, Draper CC, Avramidis D, Kazandzoglou O. Sero-epidemiological surveillance of disappearing malaria in Greece. J Trop Med Hyg. 1975;78(9):194–200.PubMed Bruce-Chwatt LJ, Draper CC, Avramidis D, Kazandzoglou O. Sero-epidemiological surveillance of disappearing malaria in Greece. J Trop Med Hyg. 1975;78(9):194–200.PubMed
14.
go back to reference Voller A, Bruce-Chwatt LJ. Serological malaria surveys in Nigeria. Bull Wld Hlth Org. 1968;39:883–97. Voller A, Bruce-Chwatt LJ. Serological malaria surveys in Nigeria. Bull Wld Hlth Org. 1968;39:883–97.
15.
go back to reference Dewasurendra RL, Suriyaphol P, Fernando SD, Carter R, Rockett K, Corran PH, et al. Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka. Malar J. 2012;11:281. Dewasurendra RL, Suriyaphol P, Fernando SD, Carter R, Rockett K, Corran PH, et al. Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka. Malar J. 2012;11:281.
19.
go back to reference Badu K, Afrane YA, Labri J, Stewart VA, Waitumbi J, Angov E, et al. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis. 2012;12:50. Badu K, Afrane YA, Labri J, Stewart VA, Waitumbi J, Angov E, et al. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis. 2012;12:50.
21.
go back to reference Sepulveda N, Drakeley C. Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity. Malar J. 2015;14:141. Sepulveda N, Drakeley C. Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity. Malar J. 2015;14:141.
22.
go back to reference Sepulveda N, Paulino CD, Drakeley C. Sample size and power calculation for detecting changes in malaria transmission using antibody serocnversion rate. Malar J. 2015;14:529. Sepulveda N, Paulino CD, Drakeley C. Sample size and power calculation for detecting changes in malaria transmission using antibody serocnversion rate. Malar J. 2015;14:529.
23.
go back to reference Sepulveda N, Stresman G, White MT, Drakeley CJ. Current mathematical models for analyzing anti-malarial antibody data with an eye to malaria elimination and eradication. J Immunol Res. 2015. doi:10.1155/2015/738030. Sepulveda N, Stresman G, White MT, Drakeley CJ. Current mathematical models for analyzing anti-malarial antibody data with an eye to malaria elimination and eradication. J Immunol Res. 2015. doi:10.​1155/​2015/​738030.
25.
go back to reference Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. Plos Pathog. 2010;6:2. Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. Plos Pathog. 2010;6:2.
26.
go back to reference Druilhe P, Pradier O, Marc JP, Miltgen F, Mazier D, Parent G. Levels of antibodies to plasmodium falciparum sporozoite surface antigens reflect malaria transmission rates and are persistent in the absence of reinfection. Infect Immun. 1986;53(2):393–7.PubMedPubMedCentral Druilhe P, Pradier O, Marc JP, Miltgen F, Mazier D, Parent G. Levels of antibodies to plasmodium falciparum sporozoite surface antigens reflect malaria transmission rates and are persistent in the absence of reinfection. Infect Immun. 1986;53(2):393–7.PubMedPubMedCentral
27.
go back to reference Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Datta S, et al. Estimation of Recent and Long term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;8. Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Datta S, et al. Estimation of Recent and Long term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;8.
28.
go back to reference Donahue C, Carruthers V, Gilk S, Ward G. The Toxoplasma homolog of plasmodium apical membrane antigen 1 (AMA1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol Biochem Parasitol. 2000;111:15–30.CrossRefPubMed Donahue C, Carruthers V, Gilk S, Ward G. The Toxoplasma homolog of plasmodium apical membrane antigen 1 (AMA1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol Biochem Parasitol. 2000;111:15–30.CrossRefPubMed
29.
go back to reference Gaffar F, Yatsuda A, Frits F, Franssen J, de Vries E. Erythrocyte invasion by Babesia bovis merozoites in inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect Immune. 2004;72(5):2947–55.CrossRef Gaffar F, Yatsuda A, Frits F, Franssen J, de Vries E. Erythrocyte invasion by Babesia bovis merozoites in inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect Immune. 2004;72(5):2947–55.CrossRef
31.
go back to reference Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. PNAS. 2005;102(36):12736–41.CrossRefPubMedPubMedCentral Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. PNAS. 2005;102(36):12736–41.CrossRefPubMedPubMedCentral
33.
go back to reference Igonet S, Normand BV, Faure G, Riottot M, Cocken CHM, Thomas AW, et al. Cross-reactivity studies of an anti-Plasmodium vivax Apical Membrane Antigen 1 Monoclonal Antibody: Binding and structural characterisation. J Mol Biol. 2007;366(5):1523–37. Igonet S, Normand BV, Faure G, Riottot M, Cocken CHM, Thomas AW, et al. Cross-reactivity studies of an anti-Plasmodium vivax Apical Membrane Antigen 1 Monoclonal Antibody: Binding and structural characterisation. J Mol Biol. 2007;366(5):1523–37.
Metadata
Title
Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting
Authors
Rajika Lasanthi Dewasurendra
Janaka Nandana Dias
Nuno Sepulveda
Geethika Sharmini Abayaweera Gunawardena
Naduviladath Chandrasekharan
Chris Drakeley
Nadira Dharshani Karunaweera
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-2164-0

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue