Skip to main content
Top
Published in: BMC Gastroenterology 1/2015

Open Access 01-12-2015 | Research article

Excretion of urinary histamine and N-tele methylhistamine in patients with gastrointestinal food allergy compared to non-allergic controls during an unrestricted diet and a hypoallergenic diet

Authors: Martin Raithel, Alexander Hagel, Heinz Albrecht, Yurdaguel Zopf, Andreas Naegel, Hanns-Wolf Baenkler, Fred Buchwald, Hans-Wolfgang Schultis, Juergen Kressel, Eckhart Georg Hahn, Peter Konturek

Published in: BMC Gastroenterology | Issue 1/2015

Login to get access

Abstract

Background

Patients with gastrointestinal food allergy are characterised by increased production of mast cell derived mediators upon allergen contact and present often with unspecific symptoms. The aim of this study was to evaluate urinary histamine and methylhistamine excretion in patients with food allergy and to compare their values with food-tolerant controls.

Methods

In a retrospective case control study the urinary excretion parameters were analysed from 56 patients (40.9, 19 – 58 years) in whom later food challenge tests confirmed food allergy. During their diagnostic work-up urine was collected during a 12-h period under an unrestricted diet with staple foods and a hypoallergenic potato-rice-diet (each 2 days). Healthy controls underwent the same diet types to define normal excretion parameters. Urinary histamine and n-methylhistamine were determined by ELISA or tandem mass spectrometry, respectively, and were expressed as median (25 – 75% range, μg/mmol creatinine x m2BSA).

Results

During unrestricted diet urinary histamine was significantly higher in gastrointestinal food allergy than healthy controls (1.42, 0.9 – 2.7 vs 0.87, 0.4 – 1.3; p < 0.0001), while the difference between both groups became marginal during potato-rice diet (1.30, 0.7 – 2.1 vs 1.05, 0.5 – 1.5; p = 0.02).
N-methylhistamine was found to be significantly elevated in gastrointestinal food allergy both during unrestricted diet (7.1, 5.0 – 11.2) and potato-rice diet (5.7, 3.7 – 8.7) compared to controls (p < 0.0001). Interestingly, urinary methylhistamine excretion (p < 0.004) and clinical symptom score (p < 0.02) fell significantly when the diet was switched from unrestricted to hypoallergenic food, but was not correlated with symptom scores.

Conclusions

In gastrointestinal food allergy significantly higher levels of urine histamine and methylhistamine excretion were found under unrestricted diet, reflecting an increased secretion of histamine due to offending foods. Measurement of urinary n-methylhistamine levels may help to find out patients with increased histamine production and/or food-allergen induced clinical symptoms, respectively.
Literature
1.
go back to reference Osterballe M, Mortz CG, Hansen TK, Andersen KE, Bindslev-Jensen C. The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol. 2009;20:686–92.CrossRefPubMed Osterballe M, Mortz CG, Hansen TK, Andersen KE, Bindslev-Jensen C. The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol. 2009;20:686–92.CrossRefPubMed
2.
go back to reference Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010;126:S1–58.CrossRefPubMedPubMedCentral Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010;126:S1–58.CrossRefPubMedPubMedCentral
4.
go back to reference Zar S, Kumar D, Benson MJ. Review article: food hypersensitivity and irritable bowel syndrome. Aliment Pharmacol Ther. 2001;15:439–49.CrossRefPubMed Zar S, Kumar D, Benson MJ. Review article: food hypersensitivity and irritable bowel syndrome. Aliment Pharmacol Ther. 2001;15:439–49.CrossRefPubMed
5.
go back to reference Van den Bogaerde J, Cahill J, Emmanuel AV, Vaizey CJ, Talbot IC, Knight SC, et al. Gut mucosal response to food antigens in Crohn’s disease. Aliment Pharmacol Ther. 2002;16:1903–15. PMID: 12390099.CrossRef Van den Bogaerde J, Cahill J, Emmanuel AV, Vaizey CJ, Talbot IC, Knight SC, et al. Gut mucosal response to food antigens in Crohn’s disease. Aliment Pharmacol Ther. 2002;16:1903–15. PMID: 12390099.CrossRef
6.
go back to reference Sampson HA, Jolie PI. Increased plasma histamine concentrations after food challenge in children with atopic dermatitis. N Engl J Med. 1984;311:372–7. PMID: 6204202.CrossRefPubMed Sampson HA, Jolie PI. Increased plasma histamine concentrations after food challenge in children with atopic dermatitis. N Engl J Med. 1984;311:372–7. PMID: 6204202.CrossRefPubMed
7.
go back to reference Bengtsen U, Nilsson-Balknäs U, Hanson LA, Ahlstedt S. Double blind, placebo controlled food reactions do not correlate to IgE allergy in the diagnosis of staple food related gastrointestinal symptoms. Gut. 1996;39:130–5. PMID: 8881824.CrossRef Bengtsen U, Nilsson-Balknäs U, Hanson LA, Ahlstedt S. Double blind, placebo controlled food reactions do not correlate to IgE allergy in the diagnosis of staple food related gastrointestinal symptoms. Gut. 1996;39:130–5. PMID: 8881824.CrossRef
8.
go back to reference Vatn MH, Grimstad IA, Thorsen L, Kittang E, Refnin I, Malt U, et al. Adverse reaction to food: assessment by double-blind placebo-controlled food challenge and clinical, psychosomatic and immunologic analysis. Digestion. 1995;56:421–8.CrossRefPubMed Vatn MH, Grimstad IA, Thorsen L, Kittang E, Refnin I, Malt U, et al. Adverse reaction to food: assessment by double-blind placebo-controlled food challenge and clinical, psychosomatic and immunologic analysis. Digestion. 1995;56:421–8.CrossRefPubMed
9.
go back to reference Lin XP, Magnussen J, Ahlstedt S, Dahlmann-Hoglund A, Hanson LA, Magnusson O, et al. Local allergic reaction in food-hypersensitive adults despite a lack of systemic food-specific IgE. J Allergy Clin Immunol. 2002;109(5):879–87.CrossRefPubMed Lin XP, Magnussen J, Ahlstedt S, Dahlmann-Hoglund A, Hanson LA, Magnusson O, et al. Local allergic reaction in food-hypersensitive adults despite a lack of systemic food-specific IgE. J Allergy Clin Immunol. 2002;109(5):879–87.CrossRefPubMed
10.
go back to reference Hagel AF, de Rossi TM, Zopf Y, Lindner AS, Dauth W, Neurath MF, et al. Small bowel capsule endoscopy in patients with gastrointestinal food allergy. Allergy. 2012;67(2):286–92.CrossRefPubMed Hagel AF, de Rossi TM, Zopf Y, Lindner AS, Dauth W, Neurath MF, et al. Small bowel capsule endoscopy in patients with gastrointestinal food allergy. Allergy. 2012;67(2):286–92.CrossRefPubMed
11.
go back to reference Schwab D, Raithel M, Klein P, Winterkamp S, Weidenhiller M, Radespiel-Troeger M, et al. Immunoglobulin E and eosinophilic cationic protein in segmental lavage fluid of the small and large bowel identifies patients with food allergy. Am J Gastroenterol. 2001;96:508–14.CrossRefPubMed Schwab D, Raithel M, Klein P, Winterkamp S, Weidenhiller M, Radespiel-Troeger M, et al. Immunoglobulin E and eosinophilic cationic protein in segmental lavage fluid of the small and large bowel identifies patients with food allergy. Am J Gastroenterol. 2001;96:508–14.CrossRefPubMed
12.
go back to reference Weidenhiller M, Traenkner A, Schwab D, Hahn EG, Raithel M. Different kinetics of mediator release can be detected during allergic reactions after oral provocation (double blind placebo – controlled food challenge). Inflamm Res. 2002;51 Suppl 1:29–30. Weidenhiller M, Traenkner A, Schwab D, Hahn EG, Raithel M. Different kinetics of mediator release can be detected during allergic reactions after oral provocation (double blind placebo – controlled food challenge). Inflamm Res. 2002;51 Suppl 1:29–30.
13.
go back to reference Winterkamp S, Weidenhiller M, Wilken V, Donhauser N, Schultis HW, Buchholz F, et al. Standardised evaluation of urinary excretion of N-tele-methylhistamine in different periods of age in a healthy population. Inflamm Res. 2003;52:S57–8.CrossRefPubMed Winterkamp S, Weidenhiller M, Wilken V, Donhauser N, Schultis HW, Buchholz F, et al. Standardised evaluation of urinary excretion of N-tele-methylhistamine in different periods of age in a healthy population. Inflamm Res. 2003;52:S57–8.CrossRefPubMed
14.
go back to reference Keyzer JJ, de Monchi JG, van Doormaal JJ, van Voorst Vader PC. Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. N Engl J Med. 1983;309:1603–5.CrossRefPubMed Keyzer JJ, de Monchi JG, van Doormaal JJ, van Voorst Vader PC. Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. N Engl J Med. 1983;309:1603–5.CrossRefPubMed
15.
go back to reference Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol. 2002;97:3071–7.CrossRefPubMed Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol. 2002;97:3071–7.CrossRefPubMed
16.
go back to reference Carroccio A, Brusca I, Mansueto P, Pirrone G, Barrale M, Di Prima L, et al. A cytological assay for diagnosis of food hypersensitivity in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2010;8:254–60.CrossRefPubMed Carroccio A, Brusca I, Mansueto P, Pirrone G, Barrale M, Di Prima L, et al. A cytological assay for diagnosis of food hypersensitivity in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2010;8:254–60.CrossRefPubMed
17.
go back to reference Raithel M, Nägel A, Zopf Y, de Rossi T, Stengel C, Hagel A, et al. Plasma histamine levels (H) during adjunctive H1-receptor antagonist treatment with loratadine in patients with active Inflammatory Bowel Disease (IBD). Inflamm Res. 2010;Suppl 2:S257–8.CrossRef Raithel M, Nägel A, Zopf Y, de Rossi T, Stengel C, Hagel A, et al. Plasma histamine levels (H) during adjunctive H1-receptor antagonist treatment with loratadine in patients with active Inflammatory Bowel Disease (IBD). Inflamm Res. 2010;Suppl 2:S257–8.CrossRef
18.
go back to reference Saito K, Horie M, Nose N, Nakagomi K, Nakazawa H. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluorescence derivatization. J Chromatogr. 1992;595:163–8.CrossRefPubMed Saito K, Horie M, Nose N, Nakagomi K, Nakazawa H. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluorescence derivatization. J Chromatogr. 1992;595:163–8.CrossRefPubMed
19.
go back to reference Hermann K, Hertenberger B, Ring J. Measurement and characterization of histamine and methylhistamine in human urine under histamine-rich and histamine poor diets. Int Arch Allergy Immunol. 1993;101:13–9.CrossRefPubMed Hermann K, Hertenberger B, Ring J. Measurement and characterization of histamine and methylhistamine in human urine under histamine-rich and histamine poor diets. Int Arch Allergy Immunol. 1993;101:13–9.CrossRefPubMed
20.
go back to reference Imamura I, Watanabe T, Maeyama K, Kubota A, Okada A, Wada H. Effect of food intake on urinary excretions of histamine, n-tele methylhistamine, imidazole acetic acid and its conjugate(s) in humans and mice. J Biochem. 1984;96:1931–7.PubMed Imamura I, Watanabe T, Maeyama K, Kubota A, Okada A, Wada H. Effect of food intake on urinary excretions of histamine, n-tele methylhistamine, imidazole acetic acid and its conjugate(s) in humans and mice. J Biochem. 1984;96:1931–7.PubMed
21.
go back to reference Raithel M, Hahn M, Donhuijsen K, Hagel A, Nägel A, Rieker R, et al. Eosinophilic gastroenteritis with refractory ulcer disease and gastrointestinal bleeding as a rare manifestation of seronegative gastrointestinal food allergy. J Nutrition. 2014;13:93. doi:10.1186/1475-2891-13-93.CrossRef Raithel M, Hahn M, Donhuijsen K, Hagel A, Nägel A, Rieker R, et al. Eosinophilic gastroenteritis with refractory ulcer disease and gastrointestinal bleeding as a rare manifestation of seronegative gastrointestinal food allergy. J Nutrition. 2014;13:93. doi:10.1186/1475-2891-13-93.CrossRef
22.
go back to reference O’Sullivan S, Roquet A, Dahlen B, Dahlen SE, Kumlin M. Urinary excretion of inflammatory mediators during allergen-induced early and late phase asthmatic reactions. Clin Exp Allergy. 1998;28:1332–9.CrossRefPubMed O’Sullivan S, Roquet A, Dahlen B, Dahlen SE, Kumlin M. Urinary excretion of inflammatory mediators during allergen-induced early and late phase asthmatic reactions. Clin Exp Allergy. 1998;28:1332–9.CrossRefPubMed
23.
go back to reference Rank MA, Kita H, Li JT, Butterfield JH. Systemic reactions to allergen immunotherapy: a role for measuring a PgD2 metabolite? Ann Allergy Asthma Immunol. 2013;110(1):57–8.CrossRefPubMed Rank MA, Kita H, Li JT, Butterfield JH. Systemic reactions to allergen immunotherapy: a role for measuring a PgD2 metabolite? Ann Allergy Asthma Immunol. 2013;110(1):57–8.CrossRefPubMed
24.
go back to reference Skypala I. Adverse food reactions – an emerging issue for adults. J Am Diet Assoc. 2011;111:1877–91.CrossRefPubMed Skypala I. Adverse food reactions – an emerging issue for adults. J Am Diet Assoc. 2011;111:1877–91.CrossRefPubMed
25.
go back to reference Van Anrooij B, van der Veer E, de Monchy JG, van der Heide S, Kluin-Nelemans JC, van Voorst Vader PC, et al. Higher mast cell load decreases the risk of Hymenoptera venom-induced anaphylaxis in patients with mastocytosis. J Allergy Clin Immunol. 2013;132(1):125–30.CrossRefPubMed Van Anrooij B, van der Veer E, de Monchy JG, van der Heide S, Kluin-Nelemans JC, van Voorst Vader PC, et al. Higher mast cell load decreases the risk of Hymenoptera venom-induced anaphylaxis in patients with mastocytosis. J Allergy Clin Immunol. 2013;132(1):125–30.CrossRefPubMed
26.
go back to reference Weidenhiller M, Müller S, Schwab D, Hahn EG, Raithel M, Winterkamp S. Microscopic (collagenous and lymphocytic) colitis triggered by food allergy. Gut. 2005;54:312–3.CrossRefPubMedPubMedCentral Weidenhiller M, Müller S, Schwab D, Hahn EG, Raithel M, Winterkamp S. Microscopic (collagenous and lymphocytic) colitis triggered by food allergy. Gut. 2005;54:312–3.CrossRefPubMedPubMedCentral
27.
go back to reference Frieling T, Meis K, Kolck UW, Homann J, Hülsdonk A, Haars U, et al. Evidence of mast cell activation in patients with therapy-resistant IBS. Z Gastroenterol. 2011;49(2):191–4.CrossRefPubMed Frieling T, Meis K, Kolck UW, Homann J, Hülsdonk A, Haars U, et al. Evidence of mast cell activation in patients with therapy-resistant IBS. Z Gastroenterol. 2011;49(2):191–4.CrossRefPubMed
28.
go back to reference Rondon C, Doña I, Torres MJ, Campo P, Blanca M. Evolution of patients with nonallergic rhinitis supports conversion to allergic rhinitis. J Allergy Clin Immunol. 2009;123:1098–102.CrossRefPubMed Rondon C, Doña I, Torres MJ, Campo P, Blanca M. Evolution of patients with nonallergic rhinitis supports conversion to allergic rhinitis. J Allergy Clin Immunol. 2009;123:1098–102.CrossRefPubMed
29.
go back to reference Raithel M, Weidenhiller M, Schwab D, Winterkamp S, Hahn EG. Pancreatic enzymes: a new group of antiallergic drugs? Inflamm Res. 2002;51:13–4. Raithel M, Weidenhiller M, Schwab D, Winterkamp S, Hahn EG. Pancreatic enzymes: a new group of antiallergic drugs? Inflamm Res. 2002;51:13–4.
Metadata
Title
Excretion of urinary histamine and N-tele methylhistamine in patients with gastrointestinal food allergy compared to non-allergic controls during an unrestricted diet and a hypoallergenic diet
Authors
Martin Raithel
Alexander Hagel
Heinz Albrecht
Yurdaguel Zopf
Andreas Naegel
Hanns-Wolf Baenkler
Fred Buchwald
Hans-Wolfgang Schultis
Juergen Kressel
Eckhart Georg Hahn
Peter Konturek
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2015
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-015-0268-4

Other articles of this Issue 1/2015

BMC Gastroenterology 1/2015 Go to the issue