Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

Application of a new dietary pattern analysis method in nutritional epidemiology

Authors: Fengqing Zhang, Tinashe M. Tapera, Jiangtao Gou

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Diet plays an important role in chronic disease, and the use of dietary pattern analysis has grown rapidly as a way of deconstructing the complexity of nutritional intake and its relation to health. Pattern analysis methods, such as principal component analysis (PCA), have been used to investigate various dimensions of diet. Existing analytic methods, however, do not fully utilize the predictive potential of dietary assessment data. In particular, these methods are often suboptimal at predicting clinically important variables.

Methods

We propose a new dietary pattern analysis method using the advanced LASSO (Least Absolute Shrinkage and Selection Operator) model to improve the prediction of disease-related risk factors. Despite the potential advantages of LASSO, this is the first time that the model has been adapted for dietary pattern analysis. Hence, the systematic evaluation of the LASSO model as applied to dietary data and health outcomes is highly innovative and novel. Using Food Frequency Questionnaire data from NHANES 2005–2006, we apply PCA and LASSO to identify dietary patterns related to cardiovascular disease risk factors in healthy US adults (n = 2609) after controlling for confounding variables (e.g., age and BMI). Both analyses account for the sampling weights. Model performance in terms of prediction accuracy is evaluated using an independent test set.

Results

PCA yields 10 principal components (PCs) that together account for 65% of the variation in the data set and represent distinct dietary patterns. These PCs are then used as predictors in a regression model to predict cardiovascular disease risk factors. We find that LASSO better predicts levels of triglycerides, LDL cholesterol, HDL cholesterol, and total cholesterol (adjusted R2 = 0.861, 0.899, 0.890, and 0.935 respectively) than does the traditional, linear-regression-based, dietary pattern analysis method (adjusted R2 = 0.163, 0.005, 0.235, and 0.024 respectively) when the latter is applied to components derived from PCA.

Conclusions

The proposed method is shown to be an appropriate and promising statistical means of deriving dietary patterns predictive of cardiovascular disease risk. Future studies, involving different diseases and risk factors, will be necessary before LASSO’s broader usefulness in nutritional epidemiology can be established.
Literature
1.
go back to reference Michels KB, Schulze MB. Can dietary patterns help us detect diet–disease associations? Nutr Res Rev. 2005;18(02):241–8.CrossRef Michels KB, Schulze MB. Can dietary patterns help us detect diet–disease associations? Nutr Res Rev. 2005;18(02):241–8.CrossRef
2.
go back to reference McCullough M, Feskanich D, Stampfer M, Giovannucci E, Rimm E, Hu F, Spiegelman D, Hunter D, Colditz G, Willett W. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76(6):1261–71.CrossRef McCullough M, Feskanich D, Stampfer M, Giovannucci E, Rimm E, Hu F, Spiegelman D, Hunter D, Colditz G, Willett W. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76(6):1261–71.CrossRef
3.
go back to reference Bosire C, Stampfer MJ, Subar AF, Park Y, Kirkpatrick SI, Chiuve SE, Hollenbeck AR, Reedy J. Index-based dietary patterns and the risk of prostate cancer in the NIH-AARP diet and health study. Am J Epidemiol. 2013;177(6):504–13.CrossRef Bosire C, Stampfer MJ, Subar AF, Park Y, Kirkpatrick SI, Chiuve SE, Hollenbeck AR, Reedy J. Index-based dietary patterns and the risk of prostate cancer in the NIH-AARP diet and health study. Am J Epidemiol. 2013;177(6):504–13.CrossRef
4.
go back to reference George SM, Irwin ML, Smith AW, Neuhouser ML, Reedy J, McTiernan A, Alfano CM, Bernstein L, Ulrich CM, Baumgartner KB, et al. Postdiagnosis diet quality, the combination of diet quality and recreational physical activity, and prognosis after early-stage breast cancer. Cancer Causes Control. 2011;22(4):589–98.CrossRef George SM, Irwin ML, Smith AW, Neuhouser ML, Reedy J, McTiernan A, Alfano CM, Bernstein L, Ulrich CM, Baumgartner KB, et al. Postdiagnosis diet quality, the combination of diet quality and recreational physical activity, and prognosis after early-stage breast cancer. Cancer Causes Control. 2011;22(4):589–98.CrossRef
5.
go back to reference van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemometr Intell Lab Syst. 1994;25(2):313–23.CrossRef van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemometr Intell Lab Syst. 1994;25(2):313–23.CrossRef
6.
go back to reference Kerver JM, Yang EJ, Bianchi L, Song WO. Dietary patterns associated with risk factors for cardiovascular disease in healthy US adults. Am J Clin Nutr. 2003 Dec;78(6):1103–10.CrossRef Kerver JM, Yang EJ, Bianchi L, Song WO. Dietary patterns associated with risk factors for cardiovascular disease in healthy US adults. Am J Clin Nutr. 2003 Dec;78(6):1103–10.CrossRef
7.
go back to reference Ocké MC. Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc. 2013;72(02):191–9.CrossRef Ocké MC. Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc. 2013;72(02):191–9.CrossRef
8.
go back to reference Kennedy E, Ohls J, Carlson S, Fleming K. The healthy eating index: design and applications. J Am Diet Assoc. 1995;95(10):1103–8.CrossRef Kennedy E, Ohls J, Carlson S, Fleming K. The healthy eating index: design and applications. J Am Diet Assoc. 1995;95(10):1103–8.CrossRef
9.
go back to reference Weinstein SJ, Vogt TM, Gerrior SA. Healthy eating index scores are associated with blood nutrient concentrations in the third National Health and Nutrition Examination Survey. J Am Diet Assoc. 2004;104(4):576–84.CrossRef Weinstein SJ, Vogt TM, Gerrior SA. Healthy eating index scores are associated with blood nutrient concentrations in the third National Health and Nutrition Examination Survey. J Am Diet Assoc. 2004;104(4):576–84.CrossRef
10.
go back to reference Bailey RL, Gutschall MD, Mitchell DC, Miller CK, Lawrence FR, Smiciklas-Wright H. Comparative strategies for using cluster analysis to assess dietary patterns. J Am Diet Assoc. 2006;106(8):1194–200.CrossRef Bailey RL, Gutschall MD, Mitchell DC, Miller CK, Lawrence FR, Smiciklas-Wright H. Comparative strategies for using cluster analysis to assess dietary patterns. J Am Diet Assoc. 2006;106(8):1194–200.CrossRef
11.
go back to reference Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62(5):177–203.CrossRef Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62(5):177–203.CrossRef
12.
go back to reference Devlin UM, McNulty BA, Nugent AP, Gibney MJ. The use of cluster analysis to derive dietary patterns: methodological considerations, reproducibility, validity and the effect of energy mis-reporting. Proc Nutr Soc. 2012;71(4):599–609.CrossRef Devlin UM, McNulty BA, Nugent AP, Gibney MJ. The use of cluster analysis to derive dietary patterns: methodological considerations, reproducibility, validity and the effect of energy mis-reporting. Proc Nutr Soc. 2012;71(4):599–609.CrossRef
13.
go back to reference Ogden LG, Stroebele N, Wyatt HR, Catenacci VA, Peters JC, Stuht J, Wing RR, Hill JO. Cluster analysis of the National Weight Control Registry to identify distinct subgroups maintaining successful weight loss. Obesity. 2012;20(10):2039–47.CrossRef Ogden LG, Stroebele N, Wyatt HR, Catenacci VA, Peters JC, Stuht J, Wing RR, Hill JO. Cluster analysis of the National Weight Control Registry to identify distinct subgroups maintaining successful weight loss. Obesity. 2012;20(10):2039–47.CrossRef
14.
go back to reference Gubbels JS, Kremers SPJ, Stafleu A, Dagnelie PC, de Vries SI, de Vries NK, Thijs C. Clustering of dietary intake and sedentary behavior in 2-year-old children. J Pediatr. 2009;155(2):194–8.CrossRef Gubbels JS, Kremers SPJ, Stafleu A, Dagnelie PC, de Vries SI, de Vries NK, Thijs C. Clustering of dietary intake and sedentary behavior in 2-year-old children. J Pediatr. 2009;155(2):194–8.CrossRef
15.
go back to reference Thorpe MG, Milte CM, Crawford D, SA MN. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act. 2016;13(1):30. Thorpe MG, Milte CM, Crawford D, SA MN. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act. 2016;13(1):30.
16.
go back to reference Reedy J, Wirfält E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, Midthune D, Leitzmann M, Hollenbeck A, Schatzkin A, et al. Comparing 3 dietary pattern methods—cluster analysis, factor analysis, and index analysis—with colorectal cancer risk: the NIH–AARP diet and health study. Am J Epidemiol. 2010;171(4):479–87.CrossRef Reedy J, Wirfält E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, Midthune D, Leitzmann M, Hollenbeck A, Schatzkin A, et al. Comparing 3 dietary pattern methods—cluster analysis, factor analysis, and index analysis—with colorectal cancer risk: the NIH–AARP diet and health study. Am J Epidemiol. 2010;171(4):479–87.CrossRef
17.
go back to reference Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc. 2004;104(4):615–35.CrossRef Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc. 2004;104(4):615–35.CrossRef
18.
go back to reference Hoffmann K, Schulze MB, Schienkiewitz A, Nöthlings U, Boeing H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol. 2004;159(10):935–44.CrossRef Hoffmann K, Schulze MB, Schienkiewitz A, Nöthlings U, Boeing H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol. 2004;159(10):935–44.CrossRef
19.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Series B. Stat Methodol. 1996;58(1):267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Series B. Stat Methodol. 1996;58(1):267–88.
20.
go back to reference Lu Y, Zhou Y, Qu W, Deng M, Zhang CA. Lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics. 2011;27(17):2406–13.CrossRef Lu Y, Zhou Y, Qu W, Deng M, Zhang CA. Lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics. 2011;27(17):2406–13.CrossRef
21.
go back to reference Dyar M, Carmosino M, Breves E, Ozanne M, Clegg S, Wiens R. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim Acta B. 2012;70:51–67.CrossRef Dyar M, Carmosino M, Breves E, Ozanne M, Clegg S, Wiens R. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim Acta B. 2012;70:51–67.CrossRef
22.
go back to reference Kohannim O, Hibar DP, Stein JL, Jahanshad N, Hua X, Rajagopalan P, Toga A, Jack CR Jr, Weiner MW, De Zubicaray GI. Discovery and replication of gene influences on brain structure using LASSO regression. Front Neurosci. 2012;6:115. Kohannim O, Hibar DP, Stein JL, Jahanshad N, Hua X, Rajagopalan P, Toga A, Jack CR Jr, Weiner MW, De Zubicaray GI. Discovery and replication of gene influences on brain structure using LASSO regression. Front Neurosci. 2012;6:115.
23.
go back to reference National Center for Health Statistics. National Health and Nutrition Examination Survey. Hyattsville: Centers for Disease Control and Prevention; 2005-2006. National Center for Health Statistics. National Health and Nutrition Examination Survey. Hyattsville: Centers for Disease Control and Prevention; 2005-2006.
24.
go back to reference Sauvageot N, Alkerwi A, Albert A, Guillaume M. Use of food frequency questionnaire to assess relationships between dietary habits and cardiovascular risk factors in NESCAV study: validation with biomarkers. Nutr J. 2013;12:143.CrossRef Sauvageot N, Alkerwi A, Albert A, Guillaume M. Use of food frequency questionnaire to assess relationships between dietary habits and cardiovascular risk factors in NESCAV study: validation with biomarkers. Nutr J. 2013;12:143.CrossRef
25.
go back to reference Simon N, Friedman J, Hastie T. Tibshirani R. a sparse-group lasso. J Comput Graph Stat. 2013;22:231–45.CrossRef Simon N, Friedman J, Hastie T. Tibshirani R. a sparse-group lasso. J Comput Graph Stat. 2013;22:231–45.CrossRef
27.
go back to reference Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med. 2016;35(7):1159–77.CrossRef Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med. 2016;35(7):1159–77.CrossRef
28.
go back to reference Wang J, Tan G-J, Han L-N, Bai Y-Y, He M, Liu H-B. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017;14(2):135–50.PubMedPubMedCentral Wang J, Tan G-J, Han L-N, Bai Y-Y, He M, Liu H-B. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017;14(2):135–50.PubMedPubMedCentral
Metadata
Title
Application of a new dietary pattern analysis method in nutritional epidemiology
Authors
Fengqing Zhang
Tinashe M. Tapera
Jiangtao Gou
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0585-8

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue