Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

Estimating causal effects of time-dependent exposures on a binary endpoint in a high-dimensional setting

Authors: Vahé Asvatourian, Clélia Coutzac, Nathalie Chaput, Caroline Robert, Stefan Michiels, Emilie Lanoy

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Recently, the intervention calculus when the DAG is absent (IDA) method was developed to estimate lower bounds of causal effects from observational high-dimensional data. Originally it was introduced to assess the effect of baseline biomarkers which do not vary over time. However, in many clinical settings, measurements of biomarkers are repeated at fixed time points during treatment and, therefore, this method needs to be extended. The purpose of this paper is to extend the first step of the IDA, the Peter Clarks (PC)-algorithm, to a time-dependent exposure in the context of a binary outcome.

Methods

We generalised the so-called “PC-algorithm” to take into account the chronological order of repeated measurements of the exposure and proposed to apply the IDA with our new version, the chronologically ordered PC-algorithm (COPC-algorithm). The extension includes Firth’s correction. A simulation study has been performed before applying the method for estimating causal effects of time-dependent immunological biomarkers on toxicity, death and progression in patients with metastatic melanoma.

Results

The simulation study showed that the completed partially directed acyclic graphs (CPDAGs) obtained using COPC-algorithm were structurally closer to the true CPDAG than CPDAGs obtained using PC-algorithm. Also, causal effects were more accurate when they were estimated based on CPDAGs obtained using COPC-algorithm. Moreover, CPDAGs obtained by COPC-algorithm allowed removing non-chronological arrows with a variable measured at a time t pointing to a variable measured at a time t´ where  < t. Bidirected edges were less present in CPDAGs obtained with the COPC-algorithm, supporting the fact that there was less variability in causal effects estimated from these CPDAGs. In the example, a threshold of the per-comparison error rate of 0.5% led to the selection of an interpretable set of biomarkers.

Conclusions

The COPC-algorithm provided CPDAGs that keep the chronological structure present in the data and thus allowed to estimate lower bounds of the causal effect of time-dependent immunological biomarkers on early toxicity, premature death and progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maathuis MH, Kalisch M, Bühlmann P. Estimating high-dimensional intervention effects from observational data. Ann Stat. 2009;37(6 A):3133–64.CrossRef Maathuis MH, Kalisch M, Bühlmann P. Estimating high-dimensional intervention effects from observational data. Ann Stat. 2009;37(6 A):3133–64.CrossRef
2.
go back to reference Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search. New York: Springer Verlag; 1993. Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search. New York: Springer Verlag; 1993.
3.
go back to reference Pearl J. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press; 2009. Pearl J. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press; 2009.
4.
go back to reference Robins JM, Hernán MÁ, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.CrossRefPubMed Robins JM, Hernán MÁ, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.CrossRefPubMed
5.
go back to reference Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11:561–70.CrossRefPubMed Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11:561–70.CrossRefPubMed
6.
go back to reference Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob J-J, Davidson N, Richards J, Maio M, Hauschild A, Miller WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen T-T, Humphrey R, Hoos A, Wolchok JD. Ipilimumab plus Dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMed Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob J-J, Davidson N, Richards J, Maio M, Hauschild A, Miller WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen T-T, Humphrey R, Hoos A, Wolchok JD. Ipilimumab plus Dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMed
7.
go back to reference Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentral
8.
go back to reference Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol. 2014;11:24–37.CrossRefPubMed Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol. 2014;11:24–37.CrossRefPubMed
9.
go back to reference Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.CrossRefPubMedPubMedCentral Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.CrossRefPubMedPubMedCentral
10.
go back to reference Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.CrossRefPubMedPubMedCentral Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.CrossRefPubMedPubMedCentral
11.
go back to reference Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.CrossRefPubMed Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.CrossRefPubMed
12.
go back to reference Buyse M, Michiels S, Sargent DJ, Grothey A, Matheson A, De Gramont A. Integrating biomarkers in clinical trials. Expert Rev Mol Diagn. 2011;11:171–82.CrossRefPubMed Buyse M, Michiels S, Sargent DJ, Grothey A, Matheson A, De Gramont A. Integrating biomarkers in clinical trials. Expert Rev Mol Diagn. 2011;11:171–82.CrossRefPubMed
13.
go back to reference Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–88.CrossRef Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–88.CrossRef
14.
go back to reference Kalisch M, Fellinghauer BA, Grill E, Maathuis MH, Mansmann U, Bühlmann P, Stucki G. Understanding human functioning using graphical models. BMC Med Res Methodol. 2010;10:10–4.CrossRef Kalisch M, Fellinghauer BA, Grill E, Maathuis MH, Mansmann U, Bühlmann P, Stucki G. Understanding human functioning using graphical models. BMC Med Res Methodol. 2010;10:10–4.CrossRef
15.
go back to reference Pearl J. Statistics and causal inference: a review. Test. 2003;12:281–345.CrossRef Pearl J. Statistics and causal inference: a review. Test. 2003;12:281–345.CrossRef
16.
go back to reference Kalisch M, Machler M, Colombo D, Maathuis MH, Buhlmann P, Mächler M, Colombo D, Maathuis MH. Causal inference using graphical models with the R package pcalg. J Stat Softw. 2012;47:26.CrossRef Kalisch M, Machler M, Colombo D, Maathuis MH, Buhlmann P, Mächler M, Colombo D, Maathuis MH. Causal inference using graphical models with the R package pcalg. J Stat Softw. 2012;47:26.CrossRef
17.
go back to reference Maathuis MH, Nandy P. A review of some recent advances in causal inference. In handbook of big data. Chapman and Hall; 2016. Maathuis MH, Nandy P. A review of some recent advances in causal inference. In handbook of big data. Chapman and Hall; 2016.
18.
go back to reference Colombo D, Maathuis MH. Order-independent constraint-based causal structure learning. J Mach Learn Res. 2014;15:1–40. Colombo D, Maathuis MH. Order-independent constraint-based causal structure learning. J Mach Learn Res. 2014;15:1–40.
19.
go back to reference Kalisch M, Buehlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res. 2007;8:613–36. Kalisch M, Buehlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res. 2007;8:613–36.
20.
go back to reference Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat Methodol. 2010;72:417–73.CrossRef Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat Methodol. 2010;72:417–73.CrossRef
21.
go back to reference Stekhoven DJ, Moraes I, Sveinbjörnsson G, Hennig L, Maathuis MH, Bühlmann P. Causal stability ranking. Bioinformatics. 2012;28:2819–23.CrossRefPubMed Stekhoven DJ, Moraes I, Sveinbjörnsson G, Hennig L, Maathuis MH, Bühlmann P. Causal stability ranking. Bioinformatics. 2012;28:2819–23.CrossRefPubMed
22.
go back to reference Pearl J. Causal inference from indirect experiments. Volume 7. Boca Raton: Chapman & Hall/CRC; 1995. Pearl J. Causal inference from indirect experiments. Volume 7. Boca Raton: Chapman & Hall/CRC; 1995.
23.
go back to reference Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80:27–38.CrossRef Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80:27–38.CrossRef
24.
go back to reference Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002;21:2409–19.CrossRefPubMed Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002;21:2409–19.CrossRefPubMed
25.
go back to reference Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn. 2006;65:31–78.CrossRef Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn. 2006;65:31–78.CrossRef
26.
go back to reference van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2012;45:1–67. van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2012;45:1–67.
27.
go back to reference Mohan K, Pearl J, Tian J. Graphical models for inference with missing data. Adv Neural Inf Process Syst. 2013;26:1–9. Mohan K, Pearl J, Tian J. Graphical models for inference with missing data. Adv Neural Inf Process Syst. 2013;26:1–9.
28.
go back to reference Chu T, Glymour C. Search for additive nonlinear time series causal models. J Mach Learn Res. 2008;9:967–91. Chu T, Glymour C. Search for additive nonlinear time series causal models. J Mach Learn Res. 2008;9:967–91.
29.
go back to reference Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. Inferring causal impact using bayesian structural time-series models. Ann Appl Stat. 2015;9:247–74.CrossRef Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. Inferring causal impact using bayesian structural time-series models. Ann Appl Stat. 2015;9:247–74.CrossRef
Metadata
Title
Estimating causal effects of time-dependent exposures on a binary endpoint in a high-dimensional setting
Authors
Vahé Asvatourian
Clélia Coutzac
Nathalie Chaput
Caroline Robert
Stefan Michiels
Emilie Lanoy
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0527-5

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue