Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Software

joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes

Authors: Graeme L. Hickey, Pete Philipson, Andrea Jorgensen, Ruwanthi Kolamunnage-Dona

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Joint modelling of longitudinal and time-to-event outcomes has received considerable attention over recent years. Commensurate with this has been a rise in statistical software options for fitting these models. However, these tools have generally been limited to a single longitudinal outcome. Here, we describe the classical joint model to the case of multiple longitudinal outcomes, propose a practical algorithm for fitting the models, and demonstrate how to fit the models using a new package for the statistical software platform R, joineRML.

Results

A multivariate linear mixed sub-model is specified for the longitudinal outcomes, and a Cox proportional hazards regression model with time-varying covariates is specified for the event time sub-model. The association between models is captured through a zero-mean multivariate latent Gaussian process. The models are fitted using a Monte Carlo Expectation-Maximisation algorithm, and inferences are based on approximate standard errors from the empirical profile information matrix, which are contrasted to an alternative bootstrap estimation approach. We illustrate the model and software on a real data example for patients with primary biliary cirrhosis with three repeatedly measured biomarkers.

Conclusions

An open-source software package capable of fitting multivariate joint models is available. The underlying algorithm and source code makes use of several methods to increase computational speed.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J. 2011; 53(5):750–63.CrossRefPubMedPubMedCentral Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biom J. 2011; 53(5):750–63.CrossRefPubMedPubMedCentral
3.
go back to reference Henderson R, Diggle PJ, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000; 1(4):465–480.CrossRefPubMed Henderson R, Diggle PJ, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000; 1(4):465–480.CrossRefPubMed
4.
go back to reference Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin. 2004; 14:809–34. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin. 2004; 14:809–34.
5.
go back to reference Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G, Micallef S, Bois FY. Joint modeling of survival and longitudinal non-survival data: current methods and issues. report of the DIA Bayesian joint modeling working group. Stat Med. 2015; 34:2181–95.CrossRef Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G, Micallef S, Bois FY. Joint modeling of survival and longitudinal non-survival data: current methods and issues. report of the DIA Bayesian joint modeling working group. Stat Med. 2015; 34:2181–95.CrossRef
6.
go back to reference Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC; 2012.CrossRef Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC; 2012.CrossRef
7.
go back to reference Battes LC, Caliskan K, Rizopoulos D, Constantinescu AA, Robertus JL, Akkerhuis M, Manintveld OC, Boersma E, Kardys I. Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients. Transplantation. 2015; 99(3):580–5.CrossRefPubMed Battes LC, Caliskan K, Rizopoulos D, Constantinescu AA, Robertus JL, Akkerhuis M, Manintveld OC, Boersma E, Kardys I. Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients. Transplantation. 2015; 99(3):580–5.CrossRefPubMed
8.
go back to reference Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics. 2002; 3(4):511–28.CrossRefPubMed Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics. 2002; 3(4):511–28.CrossRefPubMed
9.
go back to reference Williamson P, Kolamunnage-Dona R, Philipson P, Marson AG. Joint modelling of longitudinal and competing risks data. Stat Med. 2008; 27:6426–38.CrossRefPubMed Williamson P, Kolamunnage-Dona R, Philipson P, Marson AG. Joint modelling of longitudinal and competing risks data. Stat Med. 2008; 27:6426–38.CrossRefPubMed
10.
go back to reference Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial. J R Stat Soc: Ser A: Stat Soc. 2018. https://doi.org/10.1111/rssa.12348. Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial. J R Stat Soc: Ser A: Stat Soc. 2018. https://​doi.​org/​10.​1111/​rssa.​12348.
11.
go back to reference Liu L, Huang X. Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. J R Stat Soc: Ser C: Appl Stat. 2009; 58(1):65–81.CrossRef Liu L, Huang X. Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. J R Stat Soc: Ser C: Appl Stat. 2009; 58(1):65–81.CrossRef
12.
go back to reference Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics. 2006; 62(2):432–45.CrossRefPubMed Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics. 2006; 62(2):432–45.CrossRefPubMed
14.
go back to reference Andrinopoulou E-R, Rizopoulos D, Takkenberg JJM, Lesaffre E. Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. Stat Methods Med Res. 2017; 26(4):1787–1801.CrossRefPubMed Andrinopoulou E-R, Rizopoulos D, Takkenberg JJM, Lesaffre E. Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. Stat Methods Med Res. 2017; 26(4):1787–1801.CrossRefPubMed
15.
go back to reference Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011; 30(12):1366–80.CrossRefPubMed Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011; 30(12):1366–80.CrossRefPubMed
16.
go back to reference Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996; 15(15):1663–85.CrossRefPubMed Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996; 15(15):1663–85.CrossRefPubMed
17.
go back to reference Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics. 2002; 58(4):742–53.CrossRefPubMed Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics. 2002; 58(4):742–53.CrossRefPubMed
18.
go back to reference Andrinopoulou E-R, Rizopoulos D. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Stat Med. 2016; 35(26):4813–23.CrossRefPubMed Andrinopoulou E-R, Rizopoulos D. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Stat Med. 2016; 35(26):4813–23.CrossRefPubMed
19.
go back to reference Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. BMC Med Res Methodol. 2016; 16(1):1–15.CrossRef Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. BMC Med Res Methodol. 2016; 16(1):1–15.CrossRef
20.
go back to reference Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002; 21:2369–82.CrossRefPubMed Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002; 21:2369–82.CrossRefPubMed
21.
22.
go back to reference Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J Am Stat Assoc. 1990; 85(411):699–704.CrossRef Wei GC, Tanner MA. A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J Am Stat Assoc. 1990; 85(411):699–704.CrossRef
23.
go back to reference Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53(1):330–9.CrossRefPubMed Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53(1):330–9.CrossRefPubMed
24.
go back to reference Ratcliffe SJ, Guo W, Ten Have TR. Joint modeling of longitudinal and survival data via a common frailty. Biometrics. 2004; 60(4):892–9.CrossRefPubMed Ratcliffe SJ, Guo W, Ten Have TR. Joint modeling of longitudinal and survival data via a common frailty. Biometrics. 2004; 60(4):892–9.CrossRefPubMed
25.
go back to reference McLachlan GJ, Krishnan T. The EM Algorithm and Extensions, 2nd ed.Hoboken: Wiley-Interscience; 2008.CrossRef McLachlan GJ, Krishnan T. The EM Algorithm and Extensions, 2nd ed.Hoboken: Wiley-Interscience; 2008.CrossRef
26.
go back to reference Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York: Springer; 2000.CrossRef Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York: Springer; 2000.CrossRef
27.
go back to reference Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New Jersey: Springer; 2000, p. 350.CrossRef Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New Jersey: Springer; 2000, p. 350.CrossRef
28.
go back to reference Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software. 2010; 35(9):1–33.CrossRef Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software. 2010; 35(9):1–33.CrossRef
30.
go back to reference Dmitrienko A, Molenberghs G, Chuang-Stein C, Offen W. Analysis of Clinical Trials Using SAS: A Practical Guide.Cary: SAS Institute; 2005. Dmitrienko A, Molenberghs G, Chuang-Stein C, Offen W. Analysis of Clinical Trials Using SAS: A Practical Guide.Cary: SAS Institute; 2005.
31.
go back to reference Law NJ, Taylor JM, Sandler H. The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure. Biostatistics. 2002; 3(4):547–63.CrossRefPubMed Law NJ, Taylor JM, Sandler H. The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure. Biostatistics. 2002; 3(4):547–63.CrossRefPubMed
32.
go back to reference McCulloch CE. Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc. 1997; 92(437):162–70.CrossRef McCulloch CE. Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc. 1997; 92(437):162–70.CrossRef
33.
go back to reference Booth JG, Hobert JP. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm.J R Stat Soc Ser B Stat Methodol. 1999; 61(1):265–85.CrossRef Booth JG, Hobert JP. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm.J R Stat Soc Ser B Stat Methodol. 1999; 61(1):265–85.CrossRef
34.
go back to reference Ripatti S, Larsen K, Palmgren J. Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Lifetime Data Anal. 2002; 8(2002):349–60.CrossRefPubMed Ripatti S, Larsen K, Palmgren J. Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Lifetime Data Anal. 2002; 8(2002):349–60.CrossRefPubMed
35.
go back to reference Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics. 2006; 62(4):1037–43.CrossRefPubMed Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics. 2006; 62(4):1037–43.CrossRefPubMed
36.
go back to reference Xu C, Baines PD, Wang JL. Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. Biostatistics. 2014; 15(4):731–44.CrossRefPubMedPubMedCentral Xu C, Baines PD, Wang JL. Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. Biostatistics. 2014; 15(4):731–44.CrossRefPubMedPubMedCentral
37.
go back to reference Eddelbuettel D, Sanderson C. RcppArmadillo: accelerating r with high-performance C++ linear algebra. Comput Stat Data Anal. 2014; 71:1054–63.CrossRef Eddelbuettel D, Sanderson C. RcppArmadillo: accelerating r with high-performance C++ linear algebra. Comput Stat Data Anal. 2014; 71:1054–63.CrossRef
38.
go back to reference Król A, Mauguen A, Mazroui Y, Laurent A, Michiels S, Rondeau V. Tutorial in joint modeling and prediction: A statistical software for correlated longitudinal outcomes, recurrent events and a terminal event. J Stat Softw. 2017; 81(3):1–52.CrossRef Król A, Mauguen A, Mazroui Y, Laurent A, Michiels S, Rondeau V. Tutorial in joint modeling and prediction: A statistical software for correlated longitudinal outcomes, recurrent events and a terminal event. J Stat Softw. 2017; 81(3):1–52.CrossRef
39.
40.
go back to reference Genz A, Bretz F. Computation of Multivariate Normal and t Probabilities. Berlin: Springer; 2009.CrossRef Genz A, Bretz F. Computation of Multivariate Normal and t Probabilities. Berlin: Springer; 2009.CrossRef
41.
go back to reference Rizopoulos D, Verbeke G, Molenberghs G. Shared parameter models under random-effects misspecification. Biometrika. 2008; 95(1):63–74.CrossRef Rizopoulos D, Verbeke G, Molenberghs G. Shared parameter models under random-effects misspecification. Biometrika. 2008; 95(1):63–74.CrossRef
42.
43.
go back to reference Pantazis N, Touloumi G. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: a simulation study. Stat Med. 2007; 26:5473–85.CrossRefPubMed Pantazis N, Touloumi G. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: a simulation study. Stat Med. 2007; 26:5473–85.CrossRefPubMed
44.
go back to reference Choi J, Zeng D, Olshan AF, Cai J. Joint modeling of survival time and longitudinal outcomes with flexible random effects. Lifetime Data Anal. 2018; 24(1):126–52.CrossRefPubMed Choi J, Zeng D, Olshan AF, Cai J. Joint modeling of survival time and longitudinal outcomes with flexible random effects. Lifetime Data Anal. 2018; 24(1):126–52.CrossRefPubMed
45.
go back to reference Murtaugh PA, Dickson ER, Van Dam GM, Malinchoc M, Grambsch PM, Langworthy AL, Gips CH. Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology. 1994; 20(1):126–134.CrossRefPubMed Murtaugh PA, Dickson ER, Van Dam GM, Malinchoc M, Grambsch PM, Langworthy AL, Gips CH. Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology. 1994; 20(1):126–134.CrossRefPubMed
46.
go back to reference Albert PS, Shih JH. An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. Ann Appl Stat. 2010; 4(3):1517–32.CrossRefPubMedPubMedCentral Albert PS, Shih JH. An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. Ann Appl Stat. 2010; 4(3):1517–32.CrossRefPubMedPubMedCentral
47.
go back to reference Crowther MJ, Abrams KR, Lambert PC. Joint modeling of longitudinal and survival data. Stata J. 2013; 13(1):165–84. Crowther MJ, Abrams KR, Lambert PC. Joint modeling of longitudinal and survival data. Stata J. 2013; 13(1):165–84.
48.
go back to reference Wang P, Shen W, Boye ME. Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial. Health Serv Outcome Res Methodol. 2012; 12(2–3):182–99.CrossRef Wang P, Shen W, Boye ME. Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial. Health Serv Outcome Res Methodol. 2012; 12(2–3):182–99.CrossRef
49.
go back to reference Rizopoulos D. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using mcmc. J Stat Softw. 2016; 72(7):1–45.CrossRef Rizopoulos D. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using mcmc. J Stat Softw. 2016; 72(7):1–45.CrossRef
50.
go back to reference Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker MA, Li P, Riddell A. Stan: a probabilistic programming language. J Stat Softw. 2017; 76(1):1–32.CrossRef Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker MA, Li P, Riddell A. Stan: a probabilistic programming language. J Stat Softw. 2017; 76(1):1–32.CrossRef
51.
go back to reference Andrinopoulou E-R, Rizopoulos D, Takkenberg JJM, Lesaffre E. Joint modeling of two longitudinal outcomes and competing risk data. Stat Med. 2014; 33(18):3167–78.CrossRefPubMed Andrinopoulou E-R, Rizopoulos D, Takkenberg JJM, Lesaffre E. Joint modeling of two longitudinal outcomes and competing risk data. Stat Med. 2014; 33(18):3167–78.CrossRefPubMed
52.
go back to reference Jaffa MA, Gebregziabher M, Jaffa AA. A joint modeling approach for right censored high dimensiondal multivariate longitudinal data. J Biom Biostat. 2014; 5(4):1000203.CrossRefPubMedPubMedCentral Jaffa MA, Gebregziabher M, Jaffa AA. A joint modeling approach for right censored high dimensiondal multivariate longitudinal data. J Biom Biostat. 2014; 5(4):1000203.CrossRefPubMedPubMedCentral
53.
go back to reference Rizopoulos D, Verbeke G, Molenberghs G. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics. 2010; 66(1):20–9.CrossRefPubMed Rizopoulos D, Verbeke G, Molenberghs G. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics. 2010; 66(1):20–9.CrossRefPubMed
Metadata
Title
joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
Authors
Graeme L. Hickey
Pete Philipson
Andrea Jorgensen
Ruwanthi Kolamunnage-Dona
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0502-1

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue