Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2017

Open Access 01-12-2017 | Research article

Trial Sequential Analysis in systematic reviews with meta-analysis

Authors: Jørn Wetterslev, Janus Christian Jakobsen, Christian Gluud

Published in: BMC Medical Research Methodology | Issue 1/2017

Login to get access

Abstract

Background

Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an interim analysis on its way towards a required information size. The results of the meta-analyses should relate the total number of randomised participants to the estimated required meta-analytic information size accounting for statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors).

Methods

We developed a methodology for interpreting meta-analysis results, using generally accepted, valid evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size has not been reached.

Results

The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the required information size and the corresponding number of required trials in a meta-analysis and the diversity (D2) measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the actual information size fails to reach the required information size. We present examples drawn from traditional meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance. Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of type I errors and of type II errors than the traditional naïve meta-analysis.

Conclusions

Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence intervals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Turner RM, Bird SM, Higgins JP. The impact of study size on metaanalyses: examination of underpowered studies in Cochrane reviews. PLoS One. 2013;8:e59202.CrossRefPubMedPubMedCentral Turner RM, Bird SM, Higgins JP. The impact of study size on metaanalyses: examination of underpowered studies in Cochrane reviews. PLoS One. 2013;8:e59202.CrossRefPubMedPubMedCentral
2.
go back to reference Pereira TV, Ioannidis JP. Statistically significant metaanalyses of clinical trials have modest credibility and inflated effects. J Clin Epidemiol. 2011;64:1060–9.CrossRefPubMed Pereira TV, Ioannidis JP. Statistically significant metaanalyses of clinical trials have modest credibility and inflated effects. J Clin Epidemiol. 2011;64:1060–9.CrossRefPubMed
3.
go back to reference AlBalawi Z, McAlister FA, Thorlund K, Wong M, Wetterslev J. Random error in cardiovascular meta-analyses: how common are false positive and false negative results? Int J Cardiol. 2013;168:1102–7.CrossRefPubMed AlBalawi Z, McAlister FA, Thorlund K, Wong M, Wetterslev J. Random error in cardiovascular meta-analyses: how common are false positive and false negative results? Int J Cardiol. 2013;168:1102–7.CrossRefPubMed
4.
go back to reference Imberger G. Multiplicity and sparse data in systematic reviews of anaesthesiological interventions: a cause of increased risk of random error and lack of reliability of conclusions? Ph.D. Thesis. Copenhagen: Copenhagen University, Faculty of Health and Medical Sciences; 2014. Imberger G. Multiplicity and sparse data in systematic reviews of anaesthesiological interventions: a cause of increased risk of random error and lack of reliability of conclusions? Ph.D. Thesis. Copenhagen: Copenhagen University, Faculty of Health and Medical Sciences; 2014.
5.
go back to reference Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive metaanalyses may be inconclusive—trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal metaanalyses. Int J Epidemiol. 2009;38:287–98.CrossRefPubMed Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive metaanalyses may be inconclusive—trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal metaanalyses. Int J Epidemiol. 2009;38:287–98.CrossRefPubMed
6.
go back to reference Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, Guyatt G, Devereaux PJ, Thabane L. The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis—a simulation study. PLoS One. 2011;6:e25491.CrossRefPubMedPubMedCentral Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, Guyatt G, Devereaux PJ, Thabane L. The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis—a simulation study. PLoS One. 2011;6:e25491.CrossRefPubMedPubMedCentral
7.
go back to reference Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.CrossRefPubMed Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.CrossRefPubMed
8.
go back to reference Pogue J, Yusuf S. Cumulating evidence from randomised trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997;18:580–93.CrossRefPubMed Pogue J, Yusuf S. Cumulating evidence from randomised trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997;18:580–93.CrossRefPubMed
9.
go back to reference Pogue J, Yusuf S. Overcoming the limitations of current meta-analysis of randomised controlled trials. Lancet. 1998;351:47–52.CrossRefPubMed Pogue J, Yusuf S. Overcoming the limitations of current meta-analysis of randomised controlled trials. Lancet. 1998;351:47–52.CrossRefPubMed
10.
go back to reference Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. User manual for trial sequential analysis (TSA). Copenhagen Trial Unit, Centre for Clinical Intervention research, Copenhagen, Denmark. 2011: 1–115 available from www.ctu.dk/tsa. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. User manual for trial sequential analysis (TSA). Copenhagen Trial Unit, Centre for Clinical Intervention research, Copenhagen, Denmark. 2011: 1–115 available from www.​ctu.​dk/​tsa.
11.
go back to reference Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in a random-effects meta-analysis. BMC Med Res Methodol. 2009;9:86.CrossRefPubMedPubMedCentral Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in a random-effects meta-analysis. BMC Med Res Methodol. 2009;9:86.CrossRefPubMedPubMedCentral
12.
go back to reference Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. Software for trial sequential analysis (TSA) ver. 0.9.5.5 Beta. Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark, free-ware available at www.ctu.dk/tsa. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. Software for trial sequential analysis (TSA) ver. 0.9.5.5 Beta. Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark, free-ware available at www.​ctu.​dk/​tsa.
14.
go back to reference Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on systematic reviews. Lancet. 2001;357:1728.CrossRefPubMed Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on systematic reviews. Lancet. 2001;357:1728.CrossRefPubMed
15.
go back to reference Clarke M, Hopewell S, Chalmers I. Clinical trials should begin and end with systematic reviews of relevant evidence: 12 years and waiting. Lancet. 2010;376:20–1.CrossRefPubMed Clarke M, Hopewell S, Chalmers I. Clinical trials should begin and end with systematic reviews of relevant evidence: 12 years and waiting. Lancet. 2010;376:20–1.CrossRefPubMed
16.
go back to reference Nielsen N, Friberg H, Gluud C, Wetterslev J. Hypothermia after cardiac arrest should be further evaluated—a systematic review of randomised trials with metaanalysis and trial sequential analysis. Int J Cardiol. 2011;151:333–41.CrossRefPubMed Nielsen N, Friberg H, Gluud C, Wetterslev J. Hypothermia after cardiac arrest should be further evaluated—a systematic review of randomised trials with metaanalysis and trial sequential analysis. Int J Cardiol. 2011;151:333–41.CrossRefPubMed
17.
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G, Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, TTM Trial Investigators. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.CrossRefPubMed Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G, Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, TTM Trial Investigators. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.CrossRefPubMed
18.
go back to reference Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, Erlinge D, Gasche Y, Glover G, Hassager C, Horn J, Hovdenes J, Johnsson J, Kjaergaard J, Kuiper M, Langørgen J, Macken L, Martinell L, Martner P, Pellis T, Pelosi P, Petersen P, Persson S, Rundgren M, Saxena M, Svensson R, Stammet P, Thorén A, Undén J, Walden A, Wallskog J, Wanscher M, Wise MP, Wyon N, Aneman A, Friberg H. Target temperature management after out-of-hospital cardiac arrest – a randomised, parallel-group, assessor-blinded clinical trial – rationale and design. Am Heart J. 2012;163:541–8.CrossRefPubMed Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, Erlinge D, Gasche Y, Glover G, Hassager C, Horn J, Hovdenes J, Johnsson J, Kjaergaard J, Kuiper M, Langørgen J, Macken L, Martinell L, Martner P, Pellis T, Pelosi P, Petersen P, Persson S, Rundgren M, Saxena M, Svensson R, Stammet P, Thorén A, Undén J, Walden A, Wallskog J, Wanscher M, Wise MP, Wyon N, Aneman A, Friberg H. Target temperature management after out-of-hospital cardiac arrest – a randomised, parallel-group, assessor-blinded clinical trial – rationale and design. Am Heart J. 2012;163:541–8.CrossRefPubMed
19.
go back to reference Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–63.CrossRef Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–63.CrossRef
20.
go back to reference Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL, Kronick SL, American Heart Association. Part 9: post-cardiac arrest care: American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122 suppl 3:S768–86.CrossRefPubMed Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant R, Vanden Hoek TL, Kronick SL, American Heart Association. Part 9: post-cardiac arrest care: American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122 suppl 3:S768–86.CrossRefPubMed
21.
go back to reference Armitage P, McPherson CK, Rowe BC. Repeated significance tests on accumulating data. J Royal Stat Soc Series A (General). 1969;132:235–44.CrossRef Armitage P, McPherson CK, Rowe BC. Repeated significance tests on accumulating data. J Royal Stat Soc Series A (General). 1969;132:235–44.CrossRef
22.
go back to reference Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64:191–9.CrossRef Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64:191–9.CrossRef
23.
go back to reference Berkey CS, Mosteller F, Lau J, Antman EM. Uncertainty of the time of first significance in random effects cumulative meta-analysis. Control Clin Trials. 1996;17:357–71.CrossRefPubMed Berkey CS, Mosteller F, Lau J, Antman EM. Uncertainty of the time of first significance in random effects cumulative meta-analysis. Control Clin Trials. 1996;17:357–71.CrossRefPubMed
24.
go back to reference Imberger G, Vejlby AD, Hansen SB, Møller AM, Wetterslev J. Statistical multiplicity in systematic reviews of anaesthesia interventions: a quantification and comparison between Cochrane and non-Cochrane reviews. PLoS One. 2011;6:e28422.CrossRefPubMedPubMedCentral Imberger G, Vejlby AD, Hansen SB, Møller AM, Wetterslev J. Statistical multiplicity in systematic reviews of anaesthesia interventions: a quantification and comparison between Cochrane and non-Cochrane reviews. PLoS One. 2011;6:e28422.CrossRefPubMedPubMedCentral
25.
go back to reference Wald A. Contributions to the theory of statistical estimation and testing hypotheses. Ann Math Stat. 1939;10:299–326.CrossRef Wald A. Contributions to the theory of statistical estimation and testing hypotheses. Ann Math Stat. 1939;10:299–326.CrossRef
26.
go back to reference Wald A. Sequential tests of statistical hypotheses. Ann Math Stat. 1945;16:117–86.CrossRef Wald A. Sequential tests of statistical hypotheses. Ann Math Stat. 1945;16:117–86.CrossRef
28.
go back to reference Winkel P, Zhang NF. Statistical development of quality in medicine. Chichester, West Sussex: Wiley; 2007. p. 1–224.CrossRef Winkel P, Zhang NF. Statistical development of quality in medicine. Chichester, West Sussex: Wiley; 2007. p. 1–224.CrossRef
30.
go back to reference Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.CrossRef
31.
go back to reference Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG. Design and analysis of randomised clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer. 1976;34:585–612.CrossRefPubMedPubMedCentral Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG. Design and analysis of randomised clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer. 1976;34:585–612.CrossRefPubMedPubMedCentral
32.
go back to reference O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–56.CrossRefPubMed O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–56.CrossRefPubMed
33.
go back to reference ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials. International Conference on Harmonisation E9 Expert Working Group. Stat Med. 1999;18:1905–42. ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials. International Conference on Harmonisation E9 Expert Working Group. Stat Med. 1999;18:1905–42.
34.
go back to reference Kim K, DeMets DL. Confidence intervals following group sequential tests in clinical trials. Biometrics. 1987;43:857–64.CrossRefPubMed Kim K, DeMets DL. Confidence intervals following group sequential tests in clinical trials. Biometrics. 1987;43:857–64.CrossRefPubMed
35.
go back to reference DeMets DL. Group sequential procedures: calendar versus information time. Stat Med. 1989;8:1191–8.CrossRefPubMed DeMets DL. Group sequential procedures: calendar versus information time. Stat Med. 1989;8:1191–8.CrossRefPubMed
36.
go back to reference Jennison C, Turnbull BW. Group sequential methods with applications to clinical trials. Boca Raton: Chapman & Hall/CRC Press; 2000. Jennison C, Turnbull BW. Group sequential methods with applications to clinical trials. Boca Raton: Chapman & Hall/CRC Press; 2000.
37.
go back to reference Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, Elbourne DR, McLeer SK, Parmar MK, Pocock SJ, Spiegelhalter DJ, Sydes MR, Walker AE, Wallace SA, DAMOCLES Study Group. Issues in data monitoring and interim analysis of trials. Health Technol Assess. 2005;9:1–238. iii–iv.CrossRef Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH, Elbourne DR, McLeer SK, Parmar MK, Pocock SJ, Spiegelhalter DJ, Sydes MR, Walker AE, Wallace SA, DAMOCLES Study Group. Issues in data monitoring and interim analysis of trials. Health Technol Assess. 2005;9:1–238. iii–iv.CrossRef
38.
go back to reference Chow S, Shao J, Wang H. Sample size calculations in clinical research. Taylor & Francis/CRC: Boca Raton; 2003. Chow S, Shao J, Wang H. Sample size calculations in clinical research. Taylor & Francis/CRC: Boca Raton; 2003.
39.
go back to reference Reboussin DM, DeMets DL, Kim KM, Lan KK. Computations for group sequential boundaries using the Lan-DeMets spending function method. Control Clin Trials. 2000;21:190–207.CrossRefPubMed Reboussin DM, DeMets DL, Kim KM, Lan KK. Computations for group sequential boundaries using the Lan-DeMets spending function method. Control Clin Trials. 2000;21:190–207.CrossRefPubMed
40.
41.
go back to reference Deeks JJ, Higgins JPT. Statistical algorithms in Review Manager ver. 5.3. On behalf of the Statistical Methods Group of The Cochrane Collaboration. 2010. Deeks JJ, Higgins JPT. Statistical algorithms in Review Manager ver. 5.3. On behalf of the Statistical Methods Group of The Cochrane Collaboration. 2010.
42.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed
43.
go back to reference Kulinskaya E, Wood J. Trial sequential methods for meta-analysis. Res Synth Methods. 2014;5:212–20.CrossRefPubMed Kulinskaya E, Wood J. Trial sequential methods for meta-analysis. Res Synth Methods. 2014;5:212–20.CrossRefPubMed
44.
go back to reference Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP, Thabane L, Gluud LL, Als-Nielsen B, Gluud C. Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? Int J Epidemiol. 2009;38:276–86.CrossRefPubMed Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP, Thabane L, Gluud LL, Als-Nielsen B, Gluud C. Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? Int J Epidemiol. 2009;38:276–86.CrossRefPubMed
45.
go back to reference Imberger G, Thorlund K, Gluud C, Wetterslev J. False positive findings in cumulative meta-analysis with and without application of trial sequential analysis: an empirical review. BMJ Open. 2016;6(8):e011890.CrossRefPubMedPubMedCentral Imberger G, Thorlund K, Gluud C, Wetterslev J. False positive findings in cumulative meta-analysis with and without application of trial sequential analysis: an empirical review. BMJ Open. 2016;6(8):e011890.CrossRefPubMedPubMedCentral
46.
go back to reference Imberger G, Gluud C, Boylan J, Wetterslev J. Systematic reviews of anesthesiologic interventions reported as statistically significant: problems with power, precision, and type 1 error protection. Anesth Analg. 2015;121:1611–22.CrossRefPubMed Imberger G, Gluud C, Boylan J, Wetterslev J. Systematic reviews of anesthesiologic interventions reported as statistically significant: problems with power, precision, and type 1 error protection. Anesth Analg. 2015;121:1611–22.CrossRefPubMed
47.
go back to reference Mascha EJ. Alpha, beta, meta: guidelines for assessing power and type I error in meta-analyses. Anesth Analg. 2015;121:1430–3.CrossRefPubMed Mascha EJ. Alpha, beta, meta: guidelines for assessing power and type I error in meta-analyses. Anesth Analg. 2015;121:1430–3.CrossRefPubMed
48.
go back to reference Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41:818–27.CrossRefPubMedPubMedCentral Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41:818–27.CrossRefPubMedPubMedCentral
49.
go back to reference Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L, Gluud C, Devereaux PJ, Wetterslev J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012;7:e39471.CrossRefPubMedPubMedCentral Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L, Gluud C, Devereaux PJ, Wetterslev J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012;7:e39471.CrossRefPubMedPubMedCentral
50.
go back to reference Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61:763–9.CrossRefPubMed Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61:763–9.CrossRefPubMed
52.
go back to reference Keus F, Wetterslev J, Gluud C, van Laarhoven CJ. Evidence at a glance: error matrix approach for overviewing available evidence. BMC Med Res Methodol. 2010;10:90.CrossRefPubMedPubMedCentral Keus F, Wetterslev J, Gluud C, van Laarhoven CJ. Evidence at a glance: error matrix approach for overviewing available evidence. BMC Med Res Methodol. 2010;10:90.CrossRefPubMedPubMedCentral
53.
go back to reference Garattini S, Jakobsen JC, Wetterslev J, Berthele’ V, Banzi R, Rath A, Neugebauer E, Laville M, Maisson Y, Hivert Y, Eickermann M, Aydin B, Ngwabyt S, Martinho C, Giradi C, Szmigielski C, Demotes-Maynard J, Gluud C. Evidence-based clinical practice: overview of threats to the validity of evidence. Eur J Intern Med. 2016;32:13–21.CrossRefPubMed Garattini S, Jakobsen JC, Wetterslev J, Berthele’ V, Banzi R, Rath A, Neugebauer E, Laville M, Maisson Y, Hivert Y, Eickermann M, Aydin B, Ngwabyt S, Martinho C, Giradi C, Szmigielski C, Demotes-Maynard J, Gluud C. Evidence-based clinical practice: overview of threats to the validity of evidence. Eur J Intern Med. 2016;32:13–21.CrossRefPubMed
54.
go back to reference Kjaergard LL, Villumsen J, Gluud C. Reported methodological quality and discrepancies between large and small randomised trials in meta-analyses. Ann Intern Med. 2001;135:982–9. err 2008;149:219.CrossRefPubMed Kjaergard LL, Villumsen J, Gluud C. Reported methodological quality and discrepancies between large and small randomised trials in meta-analyses. Ann Intern Med. 2001;135:982–9. err 2008;149:219.CrossRefPubMed
55.
go back to reference Savović J, Jones HE, Altman DG, Harris RJ, Jüni P, Pildal J, Als-Nielsen B, Balk EM, Gluud C, Gluud LL, Ioannidis JP, Schulz KF, Beynon R, Welton NJ, Wood L, Moher D, Deeks JJ, Sterne JA. Influence of reported study design characteristics on intervention effect estimates from randomised, controlled trials. Ann Intern Med. 2012;157:429–38.CrossRefPubMed Savović J, Jones HE, Altman DG, Harris RJ, Jüni P, Pildal J, Als-Nielsen B, Balk EM, Gluud C, Gluud LL, Ioannidis JP, Schulz KF, Beynon R, Welton NJ, Wood L, Moher D, Deeks JJ, Sterne JA. Influence of reported study design characteristics on intervention effect estimates from randomised, controlled trials. Ann Intern Med. 2012;157:429–38.CrossRefPubMed
56.
go back to reference Lundh A, Sismondo S, Lexchin J, Busuioc OA, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2012;12:MR000033.PubMed Lundh A, Sismondo S, Lexchin J, Busuioc OA, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2012;12:MR000033.PubMed
57.
go back to reference Chan AW, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomised trials: comparison of protocols to published articles. JAMA. 2004;291:2457–65.CrossRefPubMed Chan AW, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomised trials: comparison of protocols to published articles. JAMA. 2004;291:2457–65.CrossRefPubMed
58.
go back to reference Andrews JC, Schünemann HJ, Oxman AD, Pottie K, Meerpohl JJ, Coello PA, Rind D, Montori VM, Brito JP, Norris S, Elbarbary M, Post P, Nasser M, Shukla V, Jaeschke R, Brozek J, Djulbegovic B, Guyatt G. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J Clin Epidemiol. 2013;66:726–35.CrossRefPubMed Andrews JC, Schünemann HJ, Oxman AD, Pottie K, Meerpohl JJ, Coello PA, Rind D, Montori VM, Brito JP, Norris S, Elbarbary M, Post P, Nasser M, Shukla V, Jaeschke R, Brozek J, Djulbegovic B, Guyatt G. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J Clin Epidemiol. 2013;66:726–35.CrossRefPubMed
62.
go back to reference Tovey DI, Bero L, Farquhar C, Lasserson T, MacLehose H, Macdonald G, et al. A response to Ian Roberts and his colleagues. Rapid response. BMJ. 2015;350:h2463.CrossRef Tovey DI, Bero L, Farquhar C, Lasserson T, MacLehose H, Macdonald G, et al. A response to Ian Roberts and his colleagues. Rapid response. BMJ. 2015;350:h2463.CrossRef
63.
go back to reference Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Trial sequential analysis: methods and software for cumulative meta-analyses. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:29–31. Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Trial sequential analysis: methods and software for cumulative meta-analyses. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:29–31.
64.
go back to reference Higgins JPT. Comment on “Trial sequential analysis: methods and software for cumulative meta-analyses”. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:32–3. Higgins JPT. Comment on “Trial sequential analysis: methods and software for cumulative meta-analyses”. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:32–3.
65.
go back to reference Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Response to “Comment by Higgins”. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:33–5. Wetterslev J, Engstrøm J, Gluud C, Thorlund K. Response to “Comment by Higgins”. Cochrane Methods Cochrane Database Syst Rev. 2012;2 suppl 1:33–5.
66.
go back to reference Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis. Stat Med. 2011;30:903–21.CrossRefPubMed Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis. Stat Med. 2011;30:903–21.CrossRefPubMed
67.
go back to reference Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Fleischmann KE, Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF, Smith Jr SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Ornato JP, Page RL, Riegel B, Tarkington LG, Yancy CW. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol. 2007;50:1707–32.CrossRefPubMed Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Fleischmann KE, Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF, Smith Jr SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Ornato JP, Page RL, Riegel B, Tarkington LG, Yancy CW. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol. 2007;50:1707–32.CrossRefPubMed
68.
go back to reference Popper KR. Logik der Forschung. Vienna: Springer; 1959. Popper KR. Logik der Forschung. Vienna: Springer; 1959.
69.
go back to reference Bangalore S, Wetterslev J, Pranesh S, Sawhney S, Gluud C, Messerli FH. Perioperative beta blockers in patients having non-cardiac surgery: a meta-analysis. Lancet. 2008;372:1962–76.CrossRefPubMed Bangalore S, Wetterslev J, Pranesh S, Sawhney S, Gluud C, Messerli FH. Perioperative beta blockers in patients having non-cardiac surgery: a meta-analysis. Lancet. 2008;372:1962–76.CrossRefPubMed
71.
go back to reference Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. The threshold for statistical and clinical significance in systematic reviews with metaanalytic methods. Med Res Methodol. 2014;14:120.CrossRef Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. The threshold for statistical and clinical significance in systematic reviews with metaanalytic methods. Med Res Methodol. 2014;14:120.CrossRef
70.
go back to reference Sterne JA. Teaching hypothesis tests – time for significant change? Stat Med 2002;21: 985–94, 995–9, 1001. Sterne JA. Teaching hypothesis tests – time for significant change? Stat Med 2002;21: 985–94, 995–9, 1001.
72.
go back to reference Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials. BMC Med Res Methodol. 2014;14:34.CrossRefPubMedPubMedCentral Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials. BMC Med Res Methodol. 2014;14:34.CrossRefPubMedPubMedCentral
73.
go back to reference Roloff V, Higgins JP, Sutton AJ. Planning future studies based on the conditional power of a meta-analysis. Stat Med. 2013;32:11–24.CrossRefPubMed Roloff V, Higgins JP, Sutton AJ. Planning future studies based on the conditional power of a meta-analysis. Stat Med. 2013;32:11–24.CrossRefPubMed
74.
go back to reference IntHout J, Ioannidis JP, Borm GF. Obtaining evidence by a single well-powered trial or several modestly powered trials. Stat Methods Med Res. 2016;25(2):538–52.CrossRefPubMed IntHout J, Ioannidis JP, Borm GF. Obtaining evidence by a single well-powered trial or several modestly powered trials. Stat Methods Med Res. 2016;25(2):538–52.CrossRefPubMed
75.
go back to reference Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35(2):215–47.CrossRef Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35(2):215–47.CrossRef
76.
go back to reference Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: John Wiley & Sons Ltd.; 2009.CrossRef Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: John Wiley & Sons Ltd.; 2009.CrossRef
77.
go back to reference Higgins JP, Spiegelhalter DJ. Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in myocardial infarction. Int J Epidemiol. 2002;31:96–104.CrossRefPubMed Higgins JP, Spiegelhalter DJ. Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in myocardial infarction. Int J Epidemiol. 2002;31:96–104.CrossRefPubMed
78.
go back to reference Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evaluation. Statistics in practice. Chichester: John Wiley & Sons Ltd; 2004. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evaluation. Statistics in practice. Chichester: John Wiley & Sons Ltd; 2004.
79.
80.
go back to reference Jennison C, Turnbull BW. Efficient group sequential designs when there are several effect sizes under consideration. Stat Med. 2006;25:917–32.CrossRefPubMed Jennison C, Turnbull BW. Efficient group sequential designs when there are several effect sizes under consideration. Stat Med. 2006;25:917–32.CrossRefPubMed
81.
go back to reference Pereira TV, Horwitz RI, Ioannidis JP. Empirical evaluation of very large treatment effects of medical interventions. JAMA. 2012;308:1676–84.CrossRefPubMed Pereira TV, Horwitz RI, Ioannidis JP. Empirical evaluation of very large treatment effects of medical interventions. JAMA. 2012;308:1676–84.CrossRefPubMed
82.
84.
go back to reference Fisher R. Statistical methods and scientific induction. J R Stat Soc Ser B. 1955;17:69–78. Fisher R. Statistical methods and scientific induction. J R Stat Soc Ser B. 1955;17:69–78.
Metadata
Title
Trial Sequential Analysis in systematic reviews with meta-analysis
Authors
Jørn Wetterslev
Janus Christian Jakobsen
Christian Gluud
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2017
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-017-0315-7

Other articles of this Issue 1/2017

BMC Medical Research Methodology 1/2017 Go to the issue