Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2017

Open Access 01-12-2017 | Research Article

Comparison of methods for estimating the attributable risk in the context of survival analysis

Authors: Malamine Gassama, Jacques Bénichou, Laureen Dartois, Anne C. M. Thiébaut

Published in: BMC Medical Research Methodology | Issue 1/2017

Login to get access

Abstract

Background

The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data.

Methods

Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier’s estimator, one semiparametric based on Cox’s model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox’s model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points.

Results

Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort.

Conclusion

In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953; 9(3):531–41.PubMed Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953; 9(3):531–41.PubMed
3.
go back to reference Bénichou J. A review of adjusted estimators of attributable risk. Stat Methods Med Res. 2001; 10(3):195–216.CrossRefPubMed Bénichou J. A review of adjusted estimators of attributable risk. Stat Methods Med Res. 2001; 10(3):195–216.CrossRefPubMed
8.
go back to reference Laaksonen MA, Knekt P, Härkänen T, Virtala E, Oja H. Estimation of the population attributable fraction for mortality in a cohort study using a piecewise constant hazards model. Am J Epidemiol. 2010; 171(7):837–47. doi:10.1093/aje/kwp457.CrossRefPubMed Laaksonen MA, Knekt P, Härkänen T, Virtala E, Oja H. Estimation of the population attributable fraction for mortality in a cohort study using a piecewise constant hazards model. Am J Epidemiol. 2010; 171(7):837–47. doi:10.​1093/​aje/​kwp457.CrossRefPubMed
9.
10.
go back to reference Spiegelman D, Hertzmark E, Wand HC. Point and interval estimates of partial population attributable risks in cohort studies: examples and software. Cancer Causes Control. 2008; 18(5):571–9. doi:10.1007/s10552-006-0090-y.CrossRef Spiegelman D, Hertzmark E, Wand HC. Point and interval estimates of partial population attributable risks in cohort studies: examples and software. Cancer Causes Control. 2008; 18(5):571–9. doi:10.​1007/​s10552-006-0090-y.CrossRef
11.
go back to reference Fournier A, Mesrine S, Dossus L, Boutron-Ruault MC, Clavel-Chapelon F, Chabbert-Buffet N. Risk of breast cancer after stopping menopausal hormone therapy in the E3N cohort. Breast Cancer Res Treat. 2014; 145(2):535–43. doi:10.1007/s10549-014-2934-6.CrossRefPubMed Fournier A, Mesrine S, Dossus L, Boutron-Ruault MC, Clavel-Chapelon F, Chabbert-Buffet N. Risk of breast cancer after stopping menopausal hormone therapy in the E3N cohort. Breast Cancer Res Treat. 2014; 145(2):535–43. doi:10.​1007/​s10549-014-2934-6.CrossRefPubMed
12.
go back to reference Dartois L, Fagherazzi G, Baglietto L, Boutron-Ruault MC, Delaloge S, Mesrine S, Clavel-Chapelon F. Proportion of premenopausal and postmenopausal breast cancers attributable to known risk factors: Estimates from the E3N-EPIC cohort. Int J Cancer. 2016; 138(10):2415–27. doi:10.1002/ijc.29987.CrossRefPubMed Dartois L, Fagherazzi G, Baglietto L, Boutron-Ruault MC, Delaloge S, Mesrine S, Clavel-Chapelon F. Proportion of premenopausal and postmenopausal breast cancers attributable to known risk factors: Estimates from the E3N-EPIC cohort. Int J Cancer. 2016; 138(10):2415–27. doi:10.​1002/​ijc.​29987.CrossRefPubMed
13.
go back to reference Kaplan EL, Meier P. Non parametric estimation from incomplete observations. J Am Stat Assoc. 1958; 53(282):457–81.CrossRef Kaplan EL, Meier P. Non parametric estimation from incomplete observations. J Am Stat Assoc. 1958; 53(282):457–81.CrossRef
14.
go back to reference Murray S, Tsiatis AA. Nonparametric survival estimation using prognostic longitudinal covariates. Biometrics. 1996; 52(1):137–51.CrossRefPubMed Murray S, Tsiatis AA. Nonparametric survival estimation using prognostic longitudinal covariates. Biometrics. 1996; 52(1):137–51.CrossRefPubMed
15.
go back to reference Cox DR. Regression models and life tables (with discussion). J R Stat Soc Series B. 1972; 34(2):187–220. Cox DR. Regression models and life tables (with discussion). J R Stat Soc Series B. 1972; 34(2):187–220.
16.
go back to reference Breslow NE. Discussion of the paper by D. R. Cox. J R Stat Soc Series B. 1972; 34(2):216–7. Breslow NE. Discussion of the paper by D. R. Cox. J R Stat Soc Series B. 1972; 34(2):216–7.
18.
go back to reference Laaksonen MA, Virtala E, Knekt P, Oja H, Härkänen T. SAS macros for calculation of population attributable fraction in a cohort study design. J Stat Softw. 2011; 43(7):1–25.CrossRef Laaksonen MA, Virtala E, Knekt P, Oja H, Härkänen T. SAS macros for calculation of population attributable fraction in a cohort study design. J Stat Softw. 2011; 43(7):1–25.CrossRef
19.
go back to reference Thiébaut ACM, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004; 23(24):3803–20.CrossRefPubMed Thiébaut ACM, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004; 23(24):3803–20.CrossRefPubMed
20.
go back to reference Laaksonen MA, Härkänen T, Knekt P, Virtala E, Oja H. Estimation of population attributable fraction (PAF) for disease occurrence in a cohort study design. Stat Med. 2010; 29(7-8):860–74. doi:10.1002/sim.3792.CrossRefPubMed Laaksonen MA, Härkänen T, Knekt P, Virtala E, Oja H. Estimation of population attributable fraction (PAF) for disease occurrence in a cohort study design. Stat Med. 2010; 29(7-8):860–74. doi:10.​1002/​sim.​3792.CrossRefPubMed
Metadata
Title
Comparison of methods for estimating the attributable risk in the context of survival analysis
Authors
Malamine Gassama
Jacques Bénichou
Laureen Dartois
Anne C. M. Thiébaut
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2017
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-016-0285-1

Other articles of this Issue 1/2017

BMC Medical Research Methodology 1/2017 Go to the issue