Skip to main content
Top
Published in: Cancer Causes & Control 5/2007

01-06-2007 | Original Paper

Point and interval estimates of partial population attributable risks in cohort studies: examples and software

Authors: D. Spiegelman, E. Hertzmark, H. C. Wand

Published in: Cancer Causes & Control | Issue 5/2007

Login to get access

Abstract

The concept of the population attributable risk (PAR) percent has found widespread application in public health research. This quantity describes the proportion of a disease which could be prevented if a specific exposure were to be eliminated from a target population. We present methods for obtaining point and interval estimates of partial PARs, where the impact on disease burden for some presumably modifiable determinants is estimated in, and applied to, a cohort study. When the disease is multifactorial, the partial PAR must, in general, be used to quantify the proportion of disease which can be prevented if a specific exposure or group of exposures is eliminated from a target population, while the distribution of other modifiable and non-modifiable risk factors is unchanged. The methods are illustrated in a study of risk factors for bladder cancer incidence (Michaud DS et al., New England J Med 340 (1999) 1390). A user-friendly SAS macro implementing the methods described in this paper is available via the worldwide web.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levin M (1953) The occurrence of lung cancer in man. Aca Unio Inter Contra Cancrum 9:531–541 Levin M (1953) The occurrence of lung cancer in man. Aca Unio Inter Contra Cancrum 9:531–541
2.
go back to reference Walter SD (1975) The distribution of Levin’s measure of attributable risk. Biometrika 62:371–374CrossRef Walter SD (1975) The distribution of Levin’s measure of attributable risk. Biometrika 62:371–374CrossRef
3.
go back to reference Uter W, Pfahlberg A (1999) The concept of attributable risk in epidemiological practice. Biom J 41(8):985–993CrossRef Uter W, Pfahlberg A (1999) The concept of attributable risk in epidemiological practice. Biom J 41(8):985–993CrossRef
4.
go back to reference Miettinen O (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMed Miettinen O (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMed
5.
go back to reference Cole P, Macmahon B (1971) Attributable risk percent in case-control studies. Br J Prevent Social Med 25(4):242 Cole P, Macmahon B (1971) Attributable risk percent in case-control studies. Br J Prevent Social Med 25(4):242
6.
go back to reference Last JM (1983) A dictionary of epidemiology. Oxford University Press, New York Last JM (1983) A dictionary of epidemiology. Oxford University Press, New York
7.
go back to reference Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C (1985) Estimating the population attributable risk for multiple risk-factors using case-control data. Am J Epidemiol 122(5):904–913PubMed Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C (1985) Estimating the population attributable risk for multiple risk-factors using case-control data. Am J Epidemiol 122(5):904–913PubMed
8.
go back to reference Benichou J (2001) A review of adjusted estimators of attributable risks. Stat Methods Med Res 10:195–216PubMedCrossRef Benichou J (2001) A review of adjusted estimators of attributable risks. Stat Methods Med Res 10:195–216PubMedCrossRef
9.
go back to reference D’Agostino RB, Lee M-L, Belanger AJ, Cupples LA, Anderson K, Kannel WB (1990) Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham heart study. Stat Med 9:1501–1515PubMedCrossRef D’Agostino RB, Lee M-L, Belanger AJ, Cupples LA, Anderson K, Kannel WB (1990) Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham heart study. Stat Med 9:1501–1515PubMedCrossRef
10.
go back to reference Walter SD (1980) Prevention for multifactorial diseases. Am J Epidemiol 112(3):409–416PubMed Walter SD (1980) Prevention for multifactorial diseases. Am J Epidemiol 112(3):409–416PubMed
11.
12.
go back to reference Morgenstern H (1983) Morgenstern corrects a conceptual error (Letter). Am J Publ Health 73(6):703–703 Morgenstern H (1983) Morgenstern corrects a conceptual error (Letter). Am J Publ Health 73(6):703–703
13.
go back to reference Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145(1):72–80PubMed Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145(1):72–80PubMed
14.
go back to reference Basu S, Landis JR (1995) Model-based estimation of population attributable risk under cross-sectional sampling. Am J Epidemiol 142(12):1338–1343PubMed Basu S, Landis JR (1995) Model-based estimation of population attributable risk under cross-sectional sampling. Am J Epidemiol 142(12):1338–1343PubMed
15.
go back to reference Greenland S, Drescher K (1993) Maximum-likelihood-estimation of the attributable fraction from logistic-models. Biometrics 49(3):865–872PubMedCrossRef Greenland S, Drescher K (1993) Maximum-likelihood-estimation of the attributable fraction from logistic-models. Biometrics 49(3):865–872PubMedCrossRef
16.
go back to reference Benichou J, Chow WH, McLaughlin JK, Mandel JS, Fraumeni JF (1998) Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol 148(5):424–430PubMed Benichou J, Chow WH, McLaughlin JK, Mandel JS, Fraumeni JF (1998) Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol 148(5):424–430PubMed
17.
go back to reference Wilson PD, Loffredo CA, Correa-Villasenor A, Ferencz C (1998) Attributable fraction for cardiac malformations. Am J Epidemiol 148(5):414–423PubMed Wilson PD, Loffredo CA, Correa-Villasenor A, Ferencz C (1998) Attributable fraction for cardiac malformations. Am J Epidemiol 148(5):414–423PubMed
18.
go back to reference Wacholder S, Benichou J, Heineman E (1994) Attributable risk—advantages of a broad definition of exposure (vol 140, pg 303,1994). Am J Epidemiol 140(7):668–668 Wacholder S, Benichou J, Heineman E (1994) Attributable risk—advantages of a broad definition of exposure (vol 140, pg 303,1994). Am J Epidemiol 140(7):668–668
19.
go back to reference Benichou J (1991) Methods of adjustment for estimating the attributable risk in case-control studies; a review. Stat Med 10:1753–1773PubMedCrossRef Benichou J (1991) Methods of adjustment for estimating the attributable risk in case-control studies; a review. Stat Med 10:1753–1773PubMedCrossRef
20.
go back to reference Michaud DS, Spiegelman D, Clinton SK, Willett WC, Giovannucci EL (1999) Total fluid intake, specific beverages and bladder cancer risk in the health professional follow-up study. New England J Med 340:1390–1397CrossRef Michaud DS, Spiegelman D, Clinton SK, Willett WC, Giovannucci EL (1999) Total fluid intake, specific beverages and bladder cancer risk in the health professional follow-up study. New England J Med 340:1390–1397CrossRef
21.
go back to reference Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer-Verlag, New York, New York Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer-Verlag, New York, New York
22.
go back to reference Mezzetti M, Ferraroni M, Decarli A, LaVecchia C, Benichou J (1996) Software for attributable risk and confidence interval estimation in case-control studies. Comput Biomed Res 29(1):63–75PubMedCrossRef Mezzetti M, Ferraroni M, Decarli A, LaVecchia C, Benichou J (1996) Software for attributable risk and confidence interval estimation in case-control studies. Comput Biomed Res 29(1):63–75PubMedCrossRef
23.
go back to reference Benichou J, Gail MH (1990) Variance calculations and confidence-intervals for estimates of the attributable risk based on logistic-models. Biometrics 46(4):991–1003PubMedCrossRef Benichou J, Gail MH (1990) Variance calculations and confidence-intervals for estimates of the attributable risk based on logistic-models. Biometrics 46(4):991–1003PubMedCrossRef
24.
go back to reference Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMed Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMed
25.
go back to reference Third National Health and Nutrition Examination Survey 1989–1994 (1996) NHANES II laboratory data file (CD-ROM). US Department of Health and Human Services National Center for Health Statistics, Hyattsville, MD Third National Health and Nutrition Examination Survey 1989–1994 (1996) NHANES II laboratory data file (CD-ROM). US Department of Health and Human Services National Center for Health Statistics, Hyattsville, MD
26.
go back to reference National Center for Health Statistics (1993) 1987 National health interview survey. Government Printing Office National Center for Health Statistics (1993) 1987 National health interview survey. Government Printing Office
27.
go back to reference Graubard BI, Fears TR (2005) Standard errors for attributable risk for simple and complex sample designs. Biometrics 61(3):847–855PubMedCrossRef Graubard BI, Fears TR (2005) Standard errors for attributable risk for simple and complex sample designs. Biometrics 61(3):847–855PubMedCrossRef
28.
go back to reference Rich-Edwards JW, Spiegelman D, Garland M, Hertzmark E, Hunter DJ, Colditz GA et al (2002) Physical activity, body mass index and ovulatory disorder infertility. Epidemiology 13:184–190PubMedCrossRef Rich-Edwards JW, Spiegelman D, Garland M, Hertzmark E, Hunter DJ, Colditz GA et al (2002) Physical activity, body mass index and ovulatory disorder infertility. Epidemiology 13:184–190PubMedCrossRef
29.
go back to reference Morgenstern H, Bursic E (1982) A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health 7:292–309PubMedCrossRef Morgenstern H, Bursic E (1982) A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health 7:292–309PubMedCrossRef
30.
go back to reference Drescher K, Becher H (1997) Estimating the generalized impact fraction from case-control data. Biometrics 53(3):1170–1176PubMedCrossRef Drescher K, Becher H (1997) Estimating the generalized impact fraction from case-control data. Biometrics 53(3):1170–1176PubMedCrossRef
31.
go back to reference Leung HM, Kupper LL (1981) Comparisons Of Confidence-Intervals For Attributable Risk. Biometrics 37(2):293–302PubMedCrossRef Leung HM, Kupper LL (1981) Comparisons Of Confidence-Intervals For Attributable Risk. Biometrics 37(2):293–302PubMedCrossRef
Metadata
Title
Point and interval estimates of partial population attributable risks in cohort studies: examples and software
Authors
D. Spiegelman
E. Hertzmark
H. C. Wand
Publication date
01-06-2007
Publisher
Kluwer Academic Publishers
Published in
Cancer Causes & Control / Issue 5/2007
Print ISSN: 0957-5243
Electronic ISSN: 1573-7225
DOI
https://doi.org/10.1007/s10552-006-0090-y

Other articles of this Issue 5/2007

Cancer Causes & Control 5/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine