Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Arterial Diseases | Research

Polygenic risk for coronary artery disease in the Scottish and English population

Authors: Chuhua Yang, Fabian Starnecker, Shichao Pang, Zhifen Chen, Ulrich Güldener, Ling Li, Matthias Heinig, Heribert Schunkert

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Epidemiological studies have repeatedly observed a markedly higher risk for coronary artery disease (CAD) in Scotland as compared to England. Up to now, it is unclear whether environmental or genetic factors might explain this phenomenon.

Methods

Using UK Biobank (UKB) data, we assessed CAD risk, based on the Framingham risk score (FRS) and common genetic variants, to explore the respective contribution to CAD prevalence in Scotland (n = 31,963) and England (n = 317,889). We calculated FRS based on sex, age, body mass index (BMI), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), antihypertensive medication, smoking status, and diabetes. We determined the allele frequency of published genome-wide significant risk CAD alleles and a weighted genetic risk score (wGRS) for quantifying genetic CAD risk.

Results

Prevalence of CAD was 16% higher in Scotland as compared to England (8.98% vs. 7.68%, P < 0.001). However, the FRS only predicted a marginally higher CAD risk (less than 1%) in Scotland (12.5 ± 10.5 vs.12.6 ± 10.6, P = 0.03). Likewise, the overall number of genome-wide significant variants affecting CAD risk (157.6 ± 7.7 and 157.5 ± 7.7; P = 0.12) and a wGRS for CAD (2.49 ± 0.25 in both populations, P = 0.14) were remarkably similar in the English and Scottish population. Interestingly, we observed substantial differences in the allele frequencies of individual risk variants. Of the previously described 163 genome-wide significant variants studied here, 35 variants had higher frequencies in Scotland, whereas 37 had higher frequencies in England (P < 0.001 each).

Conclusions

Neither the traditional risk factors included in the FRS nor a genetic risk score (GRS) based on established common risk alleles explained the higher CAD prevalence in Scotland. However, we observed marked differences in the distribution of individual risk alleles, which emphasizes that even geographically and ethnically closely related populations may display relevant differences in the genetic architecture of a common disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kessler T, Schunkert H. Coronary artery disease genetics enlightened by genome-wide association studies. JACC: Basic Transl Sci. 2021;6:610–23. Kessler T, Schunkert H. Coronary artery disease genetics enlightened by genome-wide association studies. JACC: Basic Transl Sci. 2021;6:610–23.
2.
go back to reference Gurdasani D, Barroso I, Zeggini E, Sandhu MS. Genomics of disease risk in globally diverse populations. Nat Rev Genet. 2019;20:520–35.PubMed Gurdasani D, Barroso I, Zeggini E, Sandhu MS. Genomics of disease risk in globally diverse populations. Nat Rev Genet. 2019;20:520–35.PubMed
3.
go back to reference Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European society of cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.PubMed Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European society of cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.PubMed
4.
go back to reference Bhatnagar P, Wickramasinghe K, Wilkins E, Townsend N. Trends in the epidemiology of cardiovascular disease in the UK. Heart. 2016;102:1945–52.PubMed Bhatnagar P, Wickramasinghe K, Wilkins E, Townsend N. Trends in the epidemiology of cardiovascular disease in the UK. Heart. 2016;102:1945–52.PubMed
5.
6.
go back to reference Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, Tamosiunas A, et al. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health. 2006;6:255.PubMedPubMedCentral Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, Tamosiunas A, et al. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health. 2006;6:255.PubMedPubMedCentral
7.
go back to reference Burokienė N, Domarkienė I, Ambrozaitytė L, Uktverytė I, Meškienė R, Karčiauskaitė D, et al. Classical rather than genetic risk factors account for high cardiovascular disease prevalence in Lithuania: a cross-sectional population study. Adv Med Sci. 2017;62:121–8.PubMed Burokienė N, Domarkienė I, Ambrozaitytė L, Uktverytė I, Meškienė R, Karčiauskaitė D, et al. Classical rather than genetic risk factors account for high cardiovascular disease prevalence in Lithuania: a cross-sectional population study. Adv Med Sci. 2017;62:121–8.PubMed
8.
go back to reference Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med. 2016;8:688–701.PubMedPubMedCentral Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med. 2016;8:688–701.PubMedPubMedCentral
9.
go back to reference Ding K, Kullo IJ. Evolutionary genetics of coronary heart disease. Circulation. 2009;119:459–67.PubMed Ding K, Kullo IJ. Evolutionary genetics of coronary heart disease. Circulation. 2009;119:459–67.PubMed
11.
go back to reference Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.PubMed Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.PubMed
12.
go back to reference Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007;17:1520–8.PubMedPubMedCentral Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007;17:1520–8.PubMedPubMedCentral
13.
go back to reference Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.PubMedPubMedCentral Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.PubMedPubMedCentral
14.
go back to reference Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.PubMedPubMedCentral Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.PubMedPubMedCentral
15.
go back to reference Keaton JM, Bailey JNC, Palmer ND, Freedman BI, Langefeld CD, Ng MC, et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014;133:1487–95.PubMedPubMedCentral Keaton JM, Bailey JNC, Palmer ND, Freedman BI, Langefeld CD, Ng MC, et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014;133:1487–95.PubMedPubMedCentral
16.
go back to reference Werissa NA, Piko P, Fiatal S, Kosa Z, Sandor J, Adany R. SNP-based genetic risk score modeling suggests no increased genetic susceptibility of the Roma population to type 2 diabetes mellitus. Genes. 2019;10:942.PubMedCentral Werissa NA, Piko P, Fiatal S, Kosa Z, Sandor J, Adany R. SNP-based genetic risk score modeling suggests no increased genetic susceptibility of the Roma population to type 2 diabetes mellitus. Genes. 2019;10:942.PubMedCentral
17.
go back to reference Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev. 1990;6:1–27.PubMed Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev. 1990;6:1–27.PubMed
18.
go back to reference Hanson RL, Rong R, Kobes S, Muller YL, Weil EJ, Curtis JM, et al. Role of established type 2 diabetes-susceptibility genetic variants in a high prevalence American Indian population. Diabetes. 2015;64:2646–57.PubMedPubMedCentral Hanson RL, Rong R, Kobes S, Muller YL, Weil EJ, Curtis JM, et al. Role of established type 2 diabetes-susceptibility genetic variants in a high prevalence American Indian population. Diabetes. 2015;64:2646–57.PubMedPubMedCentral
19.
go back to reference Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.PubMedPubMedCentral Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.PubMedPubMedCentral
20.
go back to reference Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114:1241–57.PubMed Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114:1241–57.PubMed
21.
go back to reference Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.PubMedPubMedCentral Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.PubMedPubMedCentral
22.
go back to reference Aragam KG, Natarajan P. Polygenic scores to assess atherosclerotic cardiovascular disease risk. Circ Res. 2020;126:1159–77.PubMedPubMedCentral Aragam KG, Natarajan P. Polygenic scores to assess atherosclerotic cardiovascular disease risk. Circ Res. 2020;126:1159–77.PubMedPubMedCentral
23.
go back to reference D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–53.PubMed D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–53.PubMed
24.
go back to reference Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.PubMedPubMedCentral Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.PubMedPubMedCentral
26.
go back to reference Duerden M, O’Flynn N, Qureshi N. Cardiovascular risk assessment and lipid modification: NICE guideline. Br J Gen Pract. 2015;65:378–80.PubMedPubMedCentral Duerden M, O’Flynn N, Qureshi N. Cardiovascular risk assessment and lipid modification: NICE guideline. Br J Gen Pract. 2015;65:378–80.PubMedPubMedCentral
27.
go back to reference Li Y, Sperrin M, van Staa T. R package “QRISK3”: an unofficial research purposed implementation of ClinRisk’s QRISK3 algorithm into R. F1000Res. 2020;8:2139. Li Y, Sperrin M, van Staa T. R package “QRISK3”: an unofficial research purposed implementation of ClinRisk’s QRISK3 algorithm into R. F1000Res. 2020;8:2139.
28.
go back to reference International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.PubMedCentral International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.PubMedCentral
29.
go back to reference Dowle M, Srinivasan A, Gorecki J, Chirico M, Stetsenko P, Short T, et al. Package ‘data. table.’ Extension of ‘data frame. 2019. Dowle M, Srinivasan A, Gorecki J, Chirico M, Stetsenko P, Short T, et al. Package ‘data. table.’ Extension of ‘data frame. 2019.
31.
go back to reference Van Den Biggelaar AHJ, De Craen AJM, Gussekloo J, Huizinga TWJ, Heijmans BT, Frölich M, et al. Inflammation underlying cardiovascular mortality is a late consequence of evolutionary programming. FASEB J. 2004;18:1022–4. Van Den Biggelaar AHJ, De Craen AJM, Gussekloo J, Huizinga TWJ, Heijmans BT, Frölich M, et al. Inflammation underlying cardiovascular mortality is a late consequence of evolutionary programming. FASEB J. 2004;18:1022–4.
32.
go back to reference Di Rienzo A, Hudson RR. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 2005;21:596–601.PubMed Di Rienzo A, Hudson RR. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 2005;21:596–601.PubMed
34.
go back to reference Ding K, Kullo IJ. Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease. BMC Med Genet. 2011;12:55.PubMedPubMedCentral Ding K, Kullo IJ. Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease. BMC Med Genet. 2011;12:55.PubMedPubMedCentral
35.
go back to reference Brindle PM, McConnachie A, Upton MN, Hart CL, Smith GD, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br J Gen Pract. 2005;55:838–45.PubMedPubMedCentral Brindle PM, McConnachie A, Upton MN, Hart CL, Smith GD, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br J Gen Pract. 2005;55:838–45.PubMedPubMedCentral
36.
go back to reference Tunstall-Pedoe H, Woodward M. SIGN group on risk estimation. By neglecting deprivation, cardiovascular risk scoring will exacerbate social gradients in disease. Heart. 2006;92:307–10.PubMed Tunstall-Pedoe H, Woodward M. SIGN group on risk estimation. By neglecting deprivation, cardiovascular risk scoring will exacerbate social gradients in disease. Heart. 2006;92:307–10.PubMed
37.
go back to reference Carstairs V, Morris R. Deprivation: explaining differences in mortality between Scotland and England and Wales. BMJ. 1989;299:886–9.PubMedPubMedCentral Carstairs V, Morris R. Deprivation: explaining differences in mortality between Scotland and England and Wales. BMJ. 1989;299:886–9.PubMedPubMedCentral
38.
go back to reference Yousaf S, Bonsall A. UK Townsend Deprivation Scores from 2011 census data. Colchester: UK Data Service; 2017. Yousaf S, Bonsall A. UK Townsend Deprivation Scores from 2011 census data. Colchester: UK Data Service; 2017.
39.
go back to reference Newton JN, Briggs ADM, Murray CJL, Dicker D, Foreman KJ, Wang H, et al. Changes in health in England, with analysis by English regions and areas of deprivation, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;386:2257–74. Newton JN, Briggs ADM, Murray CJL, Dicker D, Foreman KJ, Wang H, et al. Changes in health in England, with analysis by English regions and areas of deprivation, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;386:2257–74.
40.
go back to reference Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331–44.PubMedPubMedCentral Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331–44.PubMedPubMedCentral
41.
go back to reference Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132–45.PubMed Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132–45.PubMed
42.
go back to reference Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234:16812–23.PubMed Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234:16812–23.PubMed
43.
go back to reference Stamatakis E, Owen KB, Shepherd L, Drayton B, Hamer M, Bauman AE. Is cohort representativeness Passé? Poststratified associations of lifestyle risk factors with mortality in the UK Biobank. Epidemiology. 2021;32:179–88.PubMedPubMedCentral Stamatakis E, Owen KB, Shepherd L, Drayton B, Hamer M, Bauman AE. Is cohort representativeness Passé? Poststratified associations of lifestyle risk factors with mortality in the UK Biobank. Epidemiology. 2021;32:179–88.PubMedPubMedCentral
44.
go back to reference Holmes SD, Krantz DS, Rogers H, Gottdiener J, Contrada RJ. Mental stress and coronary artery disease: a multidisciplinary guide. Prog Cardiovasc Dis. 2006;49:106–22.PubMed Holmes SD, Krantz DS, Rogers H, Gottdiener J, Contrada RJ. Mental stress and coronary artery disease: a multidisciplinary guide. Prog Cardiovasc Dis. 2006;49:106–22.PubMed
45.
go back to reference Grazuleviciene R, Vencloviene J, Kubilius R, Grizas V, Danileviciute A, Dedele A, et al. Tracking restoration of park and urban street settings in coronary artery disease patients. Int J Environ Res Public Health. 2016;13:550.PubMedCentral Grazuleviciene R, Vencloviene J, Kubilius R, Grizas V, Danileviciute A, Dedele A, et al. Tracking restoration of park and urban street settings in coronary artery disease patients. Int J Environ Res Public Health. 2016;13:550.PubMedCentral
46.
go back to reference Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8:36.PubMedPubMedCentral Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8:36.PubMedPubMedCentral
47.
go back to reference Turgeon PJ, Sukumar AN, Marsden PA. Epigenetics of cardiovascular disease: a new ‘beat’ in coronary artery disease. MEE. 2014;2:37–52. Turgeon PJ, Sukumar AN, Marsden PA. Epigenetics of cardiovascular disease: a new ‘beat’ in coronary artery disease. MEE. 2014;2:37–52.
Metadata
Title
Polygenic risk for coronary artery disease in the Scottish and English population
Authors
Chuhua Yang
Fabian Starnecker
Shichao Pang
Zhifen Chen
Ulrich Güldener
Ling Li
Matthias Heinig
Heribert Schunkert
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02398-4

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue