Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Angiography | Research

Is myocardial bridge more frequently detected on radial access coronary angiography?

Authors: Oktay Şenöz, Zeynep Yapan Emren

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Although the incidence of myocardial bridge (MB) has been defined in different femoral access conventional coronary angiography (FACCA) studies, the frequency of MB on radial access coronary angiography (RACA) is unknown. The aim of this study was to determine the difference in the incidence of MB between patients undergoing RACA and FACCA.

Method

A total of 2500 consecutive patients who underwent RACA and a total of 1455 consecutive patients who underwent FACCA were retrospectively investigated to detect the presence of MB. The incidences of the groups were calculated separately and compared. The clinical and angiographic features of the patients with MB were analyzed.

Results

MB was detected at an incidence of 10.2%, in 255/2500 patients who underwent RACA, and 1.8% in 27/1455 patients who underwent FACCA (p < 0.001). In both RACA and FACCA patients, the most involved coronary artery was the left anterior descending artery (LAD) (86.9% and 93.1%) and the mid-segment (84.9% and 88.9%) was the most affected section. Co-involvement of multiple coronary arteries by MB was 7.8% in patients who underwent RACA and 7.4% in patients who underwent FACCA. Coronary artery disease (CAD) was determined in 111 (35.7%) of the coronary arteries with MB, of which 81.9% were proximal to the MB. No significant CAD was detected in any of the vessels of 69.8% (178/255) of the patients who underwent RACA for different clinical indications.

Conclusion

These data demonstrated that the incidence of myocardial bridge able to be detected on RACA was much higher than FACCA.
Literature
1.
go back to reference Zoghi M, Duygu H, Nalbantgil S, et al. Impaired endothelial function in patients with myocardial bridge. Echocardiography. 2006;23:577–81.CrossRef Zoghi M, Duygu H, Nalbantgil S, et al. Impaired endothelial function in patients with myocardial bridge. Echocardiography. 2006;23:577–81.CrossRef
2.
go back to reference Li J, Shang Z, Min Y, et al. Angiographic prevalence of myocardial bridging in a defined very large number of Chinese patients with chest pain. Chin Med J. 2008;21:405–8.CrossRef Li J, Shang Z, Min Y, et al. Angiographic prevalence of myocardial bridging in a defined very large number of Chinese patients with chest pain. Chin Med J. 2008;21:405–8.CrossRef
3.
go back to reference Angelini P, Trivellato M, Donis J, Leachman RD. Myocardial bridges: a review. Prog Cardiovasc Dis. 1983;26:75–88.CrossRef Angelini P, Trivellato M, Donis J, Leachman RD. Myocardial bridges: a review. Prog Cardiovasc Dis. 1983;26:75–88.CrossRef
4.
go back to reference Ishii T, Asuwa N, Masuda S, Ishikawa Y. The effects of a myocardial bridge on coronary atherosclerosis and ischaemia. J Pathol. 1998;185:4–9.CrossRef Ishii T, Asuwa N, Masuda S, Ishikawa Y. The effects of a myocardial bridge on coronary atherosclerosis and ischaemia. J Pathol. 1998;185:4–9.CrossRef
5.
go back to reference Bandyopadhyay M, Das P, Baral K, Chakroborty P. Morphological study of myocardial bridge on the coronary arteries. Indian J Thorac Cardiovasc Surg. 2010;26:193–7.CrossRef Bandyopadhyay M, Das P, Baral K, Chakroborty P. Morphological study of myocardial bridge on the coronary arteries. Indian J Thorac Cardiovasc Surg. 2010;26:193–7.CrossRef
6.
go back to reference Bauters C, Chmait A, Tricot O, et al. Coronary thrombosis and myocardial bridging. Circulation. 2002;105:130.CrossRef Bauters C, Chmait A, Tricot O, et al. Coronary thrombosis and myocardial bridging. Circulation. 2002;105:130.CrossRef
7.
go back to reference Rossi L, Dander B, Nidasio GP, et al. Myocardial bridges and ischemic heart disease. Eur Heart J. 1980;1:239–45.CrossRef Rossi L, Dander B, Nidasio GP, et al. Myocardial bridges and ischemic heart disease. Eur Heart J. 1980;1:239–45.CrossRef
8.
go back to reference Ishikawa Y, Kawawa Y, Kohda E, et al. Significance of the anatomical properties of a myocardial bridge in coronary heart disease: a review. Circ J J-Stage. 2011;75:1559.CrossRef Ishikawa Y, Kawawa Y, Kohda E, et al. Significance of the anatomical properties of a myocardial bridge in coronary heart disease: a review. Circ J J-Stage. 2011;75:1559.CrossRef
9.
go back to reference Möhlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation. 2002;106:2616–22.CrossRef Möhlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation. 2002;106:2616–22.CrossRef
10.
go back to reference Bourassa MG, Butanaru A, Lesparance J, Tardiff JC. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol. 2003;41:351–9.CrossRef Bourassa MG, Butanaru A, Lesparance J, Tardiff JC. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol. 2003;41:351–9.CrossRef
11.
go back to reference Lu GM, Zhang LJ, Guo H, et al. Comparison of myocardial bridging by dual-source CT with conventional coronary angiography. Circ J. 2008;72:1079–85.CrossRef Lu GM, Zhang LJ, Guo H, et al. Comparison of myocardial bridging by dual-source CT with conventional coronary angiography. Circ J. 2008;72:1079–85.CrossRef
12.
go back to reference Hwang JH, Ko SM, Roh HG, et al. Myocardial bridging of the left anterior descending coronary artery: depiction rate and morphologic features by dual source CT coronary angiography. Korean J Radiol. 2010;11:514–21.CrossRef Hwang JH, Ko SM, Roh HG, et al. Myocardial bridging of the left anterior descending coronary artery: depiction rate and morphologic features by dual source CT coronary angiography. Korean J Radiol. 2010;11:514–21.CrossRef
13.
go back to reference Jolly SS, Amlan S, Hamon M, et al. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157:132–40.CrossRef Jolly SS, Amlan S, Hamon M, et al. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157:132–40.CrossRef
14.
go back to reference Harikrishnan S, Sunder KR, Tharakan J, et al. Clinical and angiographic profile and follow-up of myocardial bridges: a study of 21 cases. Indian Heart J. 1999;51:503–7.PubMed Harikrishnan S, Sunder KR, Tharakan J, et al. Clinical and angiographic profile and follow-up of myocardial bridges: a study of 21 cases. Indian Heart J. 1999;51:503–7.PubMed
15.
go back to reference Kantarci M, Duran C, Durur I, et al. Detection of myocardial bridge with ECG-gated MDCT and multiplanar reconstruction. AJR. 2006;186:391–4.CrossRef Kantarci M, Duran C, Durur I, et al. Detection of myocardial bridge with ECG-gated MDCT and multiplanar reconstruction. AJR. 2006;186:391–4.CrossRef
16.
go back to reference Oylumlu M, Dogan A, Astarcıoglu MA, et al. Angiographic prevalence of myocardial bridging in our department. Kosuyolu Heart J. 2014;17(2):114–7. Oylumlu M, Dogan A, Astarcıoglu MA, et al. Angiographic prevalence of myocardial bridging in our department. Kosuyolu Heart J. 2014;17(2):114–7.
17.
go back to reference Soran O, Pamir G, Erol C, et al. The incidence and significance of myocardial bridge in a prospectively defined population of patients undergoing coronary angiography for chest pain. Tokai J Exp Clin Med. 2000;25:57–60.PubMed Soran O, Pamir G, Erol C, et al. The incidence and significance of myocardial bridge in a prospectively defined population of patients undergoing coronary angiography for chest pain. Tokai J Exp Clin Med. 2000;25:57–60.PubMed
18.
go back to reference Joyal M, Cremer FK, Pieper AJ, et al. Systemic, left ventricular and coronary hemodynamic effects of intravenous diltiazem in coronary artery disease. Am J Cardiol. 1985;56:413–7.CrossRef Joyal M, Cremer FK, Pieper AJ, et al. Systemic, left ventricular and coronary hemodynamic effects of intravenous diltiazem in coronary artery disease. Am J Cardiol. 1985;56:413–7.CrossRef
19.
go back to reference Fam MW, McGregor M. Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circulation. 1968;22:649–59.CrossRef Fam MW, McGregor M. Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circulation. 1968;22:649–59.CrossRef
20.
go back to reference Hongo Y, Tada H, Ito K, et al. Augmentation of vessel squeezing at coronary-myocardial bridge by nitroglycerin: study by quantitative coronary angiography and intravascular ultrasound. Am Heart J. 1999;138:345–50.CrossRef Hongo Y, Tada H, Ito K, et al. Augmentation of vessel squeezing at coronary-myocardial bridge by nitroglycerin: study by quantitative coronary angiography and intravascular ultrasound. Am Heart J. 1999;138:345–50.CrossRef
22.
go back to reference Santos LM, Araujo EC, Sousa LNL. Multi-arterial myocardial bridge: uncommon clinical and anatomical presentations. Arq Bras Cardiol. 2007;88(4):e71–3.CrossRef Santos LM, Araujo EC, Sousa LNL. Multi-arterial myocardial bridge: uncommon clinical and anatomical presentations. Arq Bras Cardiol. 2007;88(4):e71–3.CrossRef
24.
go back to reference Polacek P. Relation of myocardial bridges and loops on the coronary arteries to coronary occlusion. Am Heart J. 1961;61:44–52.CrossRef Polacek P. Relation of myocardial bridges and loops on the coronary arteries to coronary occlusion. Am Heart J. 1961;61:44–52.CrossRef
25.
go back to reference Noble J, Bourassa MG, Petitclerc R, Dyrda I. Myocardial bridge and milking effect of the left anterior descending coronary artery: normal variant or obstruction? Am J Cardiol. 1976;37:993–9.CrossRef Noble J, Bourassa MG, Petitclerc R, Dyrda I. Myocardial bridge and milking effect of the left anterior descending coronary artery: normal variant or obstruction? Am J Cardiol. 1976;37:993–9.CrossRef
26.
go back to reference Kramer JR, Kitazume H, Proudfit WL, Sones FM Jr. Clinical significance of isolated coronary bridges: benign and frequent condition involving the left anterior descending artery. Am Heart J. 1982;103:283–8.CrossRef Kramer JR, Kitazume H, Proudfit WL, Sones FM Jr. Clinical significance of isolated coronary bridges: benign and frequent condition involving the left anterior descending artery. Am Heart J. 1982;103:283–8.CrossRef
27.
go back to reference Cay S, Oztürk S, Cihan G, et al. Angiographic prevalence of myocardial bridging. Anadolu Kardiyol Derg. 2006;6:9–12.PubMed Cay S, Oztürk S, Cihan G, et al. Angiographic prevalence of myocardial bridging. Anadolu Kardiyol Derg. 2006;6:9–12.PubMed
28.
go back to reference Dean JW, Mills PG. Abnormal ventricular repolarization in association with myocardial bridging. Br Heart J. 1994;71:366–7.CrossRef Dean JW, Mills PG. Abnormal ventricular repolarization in association with myocardial bridging. Br Heart J. 1994;71:366–7.CrossRef
29.
go back to reference Faruqui AMA, Maloy WC, Feiner JM, et al. Symptomatic myocardial bridging of coronary artery. Am J Cardiol. 1978;41:1305–11.CrossRef Faruqui AMA, Maloy WC, Feiner JM, et al. Symptomatic myocardial bridging of coronary artery. Am J Cardiol. 1978;41:1305–11.CrossRef
30.
go back to reference Feldman AM, Baughman KL. Myocardial infarction associated with a myocardial bridge. Am Heart J. 1986;1:784.CrossRef Feldman AM, Baughman KL. Myocardial infarction associated with a myocardial bridge. Am Heart J. 1986;1:784.CrossRef
31.
go back to reference Ishii T, Asuwa N, Masuda S, et al. Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study. Mod Pathol. 1991;4:424–31.PubMed Ishii T, Asuwa N, Masuda S, et al. Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study. Mod Pathol. 1991;4:424–31.PubMed
32.
go back to reference Ishikawa Y, Akasaka Y, Suzuki K, et al. Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation. 2009;120:376–83.CrossRef Ishikawa Y, Akasaka Y, Suzuki K, et al. Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation. 2009;120:376–83.CrossRef
33.
go back to reference Ural E, Bildirici U, Celikyurt U, et al. Long-term prognosis of non-interventionally followed patients with isolated myocardial bridge and severe systolic compression of the left anterior descending coronary artery. Clin Cardiol. 2009;32(8):454–7.CrossRef Ural E, Bildirici U, Celikyurt U, et al. Long-term prognosis of non-interventionally followed patients with isolated myocardial bridge and severe systolic compression of the left anterior descending coronary artery. Clin Cardiol. 2009;32(8):454–7.CrossRef
34.
go back to reference Matta A, Canitrot R, Nader V, et al. Left anterior descending myocardial bridge: angiographic prevalence and its association to atherosclerosis. Indian Heart J. 2021;73:e429–33.CrossRef Matta A, Canitrot R, Nader V, et al. Left anterior descending myocardial bridge: angiographic prevalence and its association to atherosclerosis. Indian Heart J. 2021;73:e429–33.CrossRef
Metadata
Title
Is myocardial bridge more frequently detected on radial access coronary angiography?
Authors
Oktay Şenöz
Zeynep Yapan Emren
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02382-y

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue