Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

01-12-2021 | Tetralogy of Fallot | Research article

Construction and investigation of a circRNA-associated ceRNA regulatory network in Tetralogy of Fallot

Authors: Haifei Yu, Xinrui Wang, Hua Cao

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

As the most frequent type of cyanotic congenital heart disease (CHD), tetralogy of Fallot (TOF) has a relatively poor prognosis without corrective surgery. Circular RNAs (circRNAs) represent a novel class of endogenous noncoding RNAs that regulate target gene expression posttranscriptionally in heart development. Here, we investigated the potential role of the ceRNA network in the pathogenesis of TOF.

Methods

To identify circRNA expression profiles in TOF, microarrays were used to screen the differentially expressed circRNAs between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA-associated ceRNA network was constructed using the established multistep screening strategy.

Results

In summary, a total of 276 differentially expressed circRNAs were identified, including 214 upregulated and 62 downregulated circRNAs in TOF samples. By constructing the circRNA-associated ceRNA network based on bioinformatics data, a total of 19 circRNAs, 9 miRNAs, and 34 mRNAs were further screened. Moreover, by enlarging the sample size, the qPCR results validated the positive correlations between hsa_circ_0007798 and HIF1A.

Conclusions

The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as the hsa_circ_0007798/miR-199b-5p/HIF1A signalling axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addition, we propose that the ceRNA network regulates TOF progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Simmons MA, Brueckner M. The genetics of congenital heart disease… understanding and improving long-term outcomes in congenital heart disease: a review for the general cardiologist and primary care physician. Curr Opin Pediatr. 2017;29:520.PubMedPubMedCentralCrossRef Simmons MA, Brueckner M. The genetics of congenital heart disease… understanding and improving long-term outcomes in congenital heart disease: a review for the general cardiologist and primary care physician. Curr Opin Pediatr. 2017;29:520.PubMedPubMedCentralCrossRef
3.
go back to reference Abouk R, Grosse SD, Ailes EC, Oster ME. Association of US state implementation of newborn screening policies for critical congenital heart disease with early infant cardiac deaths. JAMA. 2017;318:2111.PubMedPubMedCentralCrossRef Abouk R, Grosse SD, Ailes EC, Oster ME. Association of US state implementation of newborn screening policies for critical congenital heart disease with early infant cardiac deaths. JAMA. 2017;318:2111.PubMedPubMedCentralCrossRef
4.
go back to reference Seckeler M, Lawson E, Barber B, Klewer S. Percutaneous management of complex acquired aortic coarctation in an adult with tetralogy of Fallot and pulmonary atresia. Ann Pediatr Cardiol. 2017;10:295.PubMedPubMedCentralCrossRef Seckeler M, Lawson E, Barber B, Klewer S. Percutaneous management of complex acquired aortic coarctation in an adult with tetralogy of Fallot and pulmonary atresia. Ann Pediatr Cardiol. 2017;10:295.PubMedPubMedCentralCrossRef
5.
go back to reference Jones MI, Qureshi SA. Recent advances in transcatheter management of pulmonary regurgitation after surgical repair of tetralogy of Fallot. F1000research. 2018;7:679.CrossRef Jones MI, Qureshi SA. Recent advances in transcatheter management of pulmonary regurgitation after surgical repair of tetralogy of Fallot. F1000research. 2018;7:679.CrossRef
6.
go back to reference Athanasiadis DI, Mylonas KS, Kasparian K, Ziogas IA, Avgerinos DV. Surgical outcomes in syndromic tetralogy of fallot: a systematic review and evidence quality assessment. Pediatr Cardiol. 2019;40(6):1105–12.PubMedCrossRef Athanasiadis DI, Mylonas KS, Kasparian K, Ziogas IA, Avgerinos DV. Surgical outcomes in syndromic tetralogy of fallot: a systematic review and evidence quality assessment. Pediatr Cardiol. 2019;40(6):1105–12.PubMedCrossRef
9.
go back to reference Peng B, Han X, Peng C, Luo X, Deng L, Huang L. G9α-dependent histone H3K9me3 hypomethylation promotes overexpression of cardiomyogenesis-related genes in fetal mice. J Cell Mol Med. 2020;24:1036–45.PubMedCrossRef Peng B, Han X, Peng C, Luo X, Deng L, Huang L. G9α-dependent histone H3K9me3 hypomethylation promotes overexpression of cardiomyogenesis-related genes in fetal mice. J Cell Mol Med. 2020;24:1036–45.PubMedCrossRef
10.
go back to reference Yilbas A, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, et al. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem. 2014;2:12.PubMedPubMedCentralCrossRef Yilbas A, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, et al. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem. 2014;2:12.PubMedPubMedCentralCrossRef
11.
go back to reference Gasiūnienė M, Petkus G, Matuzevičius D, Navakauskas D, Navakauskienė R. Angiotensin II and TGF-β1 induce alterations in human amniotic fluid-derived mesenchymal stem cells leading to cardiomyogenic differentiation initiation. Int J Stem Cells. 2019;12:251.PubMedPubMedCentralCrossRef Gasiūnienė M, Petkus G, Matuzevičius D, Navakauskas D, Navakauskienė R. Angiotensin II and TGF-β1 induce alterations in human amniotic fluid-derived mesenchymal stem cells leading to cardiomyogenic differentiation initiation. Int J Stem Cells. 2019;12:251.PubMedPubMedCentralCrossRef
12.
go back to reference Gao J, Xu W, Wang J, Wang K, Li P. The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int J Mol Sci. 2017;18:608.PubMedCentralCrossRef Gao J, Xu W, Wang J, Wang K, Li P. The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int J Mol Sci. 2017;18:608.PubMedCentralCrossRef
13.
go back to reference Huang S, Li X, Zheng H, Si X, Li B, Wei G, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019;139:2857–76.PubMedPubMedCentralCrossRef Huang S, Li X, Zheng H, Si X, Li B, Wei G, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019;139:2857–76.PubMedPubMedCentralCrossRef
14.
go back to reference Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 2019;20(4):1420–33.PubMedCrossRef Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 2019;20(4):1420–33.PubMedCrossRef
15.
go back to reference Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. The EMBO J. 2019; 38(16). Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. The EMBO J. 2019; 38(16).
16.
go back to reference Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.PubMedCrossRef Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.PubMedCrossRef
17.
go back to reference Kristensen LS, Andersen MS, Stagsted LV, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology, and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.PubMedCrossRef Kristensen LS, Andersen MS, Stagsted LV, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology, and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.PubMedCrossRef
18.
go back to reference O’Brien JE, Kibiryeva N, Zhou XG, Marshall JA, Bittel DC. Noncoding RNA expression in myocardium from infants with tetralogy of fallot. Circ Cardiovasc Genet. 2012;5:279–86.PubMedCrossRef O’Brien JE, Kibiryeva N, Zhou XG, Marshall JA, Bittel DC. Noncoding RNA expression in myocardium from infants with tetralogy of fallot. Circ Cardiovasc Genet. 2012;5:279–86.PubMedCrossRef
19.
go back to reference Liao Z, Wang X, Zeng Y, Zou Q. Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci Rep. 2016;6:39655.PubMedPubMedCentralCrossRef Liao Z, Wang X, Zeng Y, Zou Q. Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci Rep. 2016;6:39655.PubMedPubMedCentralCrossRef
20.
go back to reference Wang X, Liao Z, Bai Z, He Y, Duan J, Wei L. MiR-93-5p promotes cell proliferation through down-regulating PPARGC1A in hepatocellular carcinoma cells by bioinformatics analysis and experimental verification. Genes. 2018;9:51.PubMedCentralCrossRef Wang X, Liao Z, Bai Z, He Y, Duan J, Wei L. MiR-93-5p promotes cell proliferation through down-regulating PPARGC1A in hepatocellular carcinoma cells by bioinformatics analysis and experimental verification. Genes. 2018;9:51.PubMedCentralCrossRef
21.
go back to reference Long J, Xiong J, Mao J, Zhang H, Bai Y, Lin J, et al. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma. Front Oncol. 2019;9:649.PubMedPubMedCentralCrossRef Long J, Xiong J, Mao J, Zhang H, Bai Y, Lin J, et al. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma. Front Oncol. 2019;9:649.PubMedPubMedCentralCrossRef
22.
go back to reference Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.PubMedPubMedCentralCrossRef Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.PubMedPubMedCentralCrossRef
23.
go back to reference Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45:D972–8.PubMedCrossRef Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45:D972–8.PubMedCrossRef
24.
go back to reference Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, et al. Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation. 2011;124:1212–22.PubMedPubMedCentralCrossRef Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, et al. Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation. 2011;124:1212–22.PubMedPubMedCentralCrossRef
25.
go back to reference Moreau JL, Kesteven S, Martin EM, Lau KS, Yam MX, O'Reilly VC et al. Gene-environment interaction impacts on heart development and embryo survival. Development. 2019; 146: dev172957. Moreau JL, Kesteven S, Martin EM, Lau KS, Yam MX, O'Reilly VC et al. Gene-environment interaction impacts on heart development and embryo survival. Development. 2019; 146: dev172957.
26.
go back to reference Herrer I, Roselló-Lletí E, Ortega A, Tarazón E, Molina-Navarro MM, Triviño JC, et al. Gene-expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Med Genom. 2015;8:14.CrossRef Herrer I, Roselló-Lletí E, Ortega A, Tarazón E, Molina-Navarro MM, Triviño JC, et al. Gene-expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Med Genom. 2015;8:14.CrossRef
27.
go back to reference Bittel DC, Zhou X-G, Kibiryeva N, Fiedler S, O’Brien Jr JE, Marshall J, et al. Ultra high-resolution gene-centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot. PloS one. 2014; 9(1). Bittel DC, Zhou X-G, Kibiryeva N, Fiedler S, O’Brien Jr JE, Marshall J, et al. Ultra high-resolution gene-centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot. PloS one. 2014; 9(1).
28.
go back to reference Domnina YA, Kerstein J, Johnson J, Sharma MS, Kazmerski TM, Chrysostomou C, et al. Tetralogy of Fallot. Critical Care of Children with Heart Disease. Springer. 2020, pp 191–197. Domnina YA, Kerstein J, Johnson J, Sharma MS, Kazmerski TM, Chrysostomou C, et al. Tetralogy of Fallot. Critical Care of Children with Heart Disease. Springer. 2020, pp 191–197.
29.
go back to reference Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676–89.PubMedCrossRef Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676–89.PubMedCrossRef
30.
go back to reference Alesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234:5588–600.CrossRef Alesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234:5588–600.CrossRef
31.
go back to reference Kreutzer FP, Fiedler J, Thum T. Non‐coding RNAs: key players in cardiac disease. The J Physiol (Lond.). 2019: 31291008. Kreutzer FP, Fiedler J, Thum T. Non‐coding RNAs: key players in cardiac disease. The J Physiol (Lond.). 2019: 31291008.
32.
go back to reference Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.PubMedCrossRef Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.PubMedCrossRef
33.
go back to reference Menendez-Montes I, Escobar B, Palacios B, Gómez MJ, Izquierdo-Garcia JL, Flores L, et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell. 2016;39:724–39.PubMedCrossRef Menendez-Montes I, Escobar B, Palacios B, Gómez MJ, Izquierdo-Garcia JL, Flores L, et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell. 2016;39:724–39.PubMedCrossRef
34.
go back to reference Nonaka CKV, Cavalcante BRR, Alcântara ACD, Silva DN, Bezerra MDR, Caria ACI, et al. Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in Chagas disease cardiomyopathy. Int J Mol Sci. 2019;20:4064.PubMedCentralCrossRef Nonaka CKV, Cavalcante BRR, Alcântara ACD, Silva DN, Bezerra MDR, Caria ACI, et al. Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in Chagas disease cardiomyopathy. Int J Mol Sci. 2019;20:4064.PubMedCentralCrossRef
35.
go back to reference Li Z, Liu L, Hou N, Song Y, An X, Zhang Y, et al. miR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovasc Res. 2016;110:258–67.PubMedCrossRef Li Z, Liu L, Hou N, Song Y, An X, Zhang Y, et al. miR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovasc Res. 2016;110:258–67.PubMedCrossRef
36.
go back to reference Duygu B, Poels EM, Juni R, Bitsch N, Ottaviani L, Olieslagers S, et al. miR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction. Non-coding RNA Res. 2017;2:18–26.CrossRef Duygu B, Poels EM, Juni R, Bitsch N, Ottaviani L, Olieslagers S, et al. miR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction. Non-coding RNA Res. 2017;2:18–26.CrossRef
37.
go back to reference R Shane Tubbs A, Nicholas Gianaris, Mohammadali M Shoja, Marios Loukas.“The heart is simply a muscle” and the first description of the tetralogy of “Fallo”. Early contributions to cardiac anatomy and pathology by bishop and anatomist Niels Stensen (1638–1686). Int J Cardiol, 2012, (154): 312–315. R Shane Tubbs A, Nicholas Gianaris, Mohammadali M Shoja, Marios Loukas.“The heart is simply a muscle” and the first description of the tetralogy of “Fallo”. Early contributions to cardiac anatomy and pathology by bishop and anatomist Niels Stensen (1638–1686). Int J Cardiol, 2012, (154): 312–315.
38.
go back to reference Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet. 2012;91:489–501.PubMedPubMedCentralCrossRef Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet. 2012;91:489–501.PubMedPubMedCentralCrossRef
39.
go back to reference Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, et al. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot[J]. J Med Genet. 2010;47:321–31.PubMedCrossRef Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, et al. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot[J]. J Med Genet. 2010;47:321–31.PubMedCrossRef
40.
go back to reference Egbe A, Uppu S, Lee S, Ho D, Srivastava S. Changing prevalence of severe congenital heart disease: a population-based study[J]. Pediatr Cardiol. 2014;35:1232–8.PubMedCrossRef Egbe A, Uppu S, Lee S, Ho D, Srivastava S. Changing prevalence of severe congenital heart disease: a population-based study[J]. Pediatr Cardiol. 2014;35:1232–8.PubMedCrossRef
41.
go back to reference Sesllar S, Robinson M. Understanding sudden death risk in tetralogy of Fallot: from bedside to bench. Heart. 2017;103:333–4.CrossRef Sesllar S, Robinson M. Understanding sudden death risk in tetralogy of Fallot: from bedside to bench. Heart. 2017;103:333–4.CrossRef
42.
go back to reference Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc, 2018, (7): e006906. Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc, 2018, (7): e006906.
43.
44.
go back to reference MatosNieves A, Yasuhara J, Garg V. Another NOTCH in the genetic puzzle of tetralogy of fallot. Circ Res. 2019;124:462–4.CrossRef MatosNieves A, Yasuhara J, Garg V. Another NOTCH in the genetic puzzle of tetralogy of fallot. Circ Res. 2019;124:462–4.CrossRef
45.
go back to reference Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.PubMedCrossRef Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.PubMedCrossRef
47.
go back to reference Wilusz JE. A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 2018;9(4). Wilusz JE. A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 2018;9(4).
49.
go back to reference Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Good Fellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993, 73: 1019–1030. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Good Fellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993, 73: 1019–1030.
50.
go back to reference Li Xiang, Yang Li, Chen Ling-Ling. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–42.PubMedCrossRef Li Xiang, Yang Li, Chen Ling-Ling. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–42.PubMedCrossRef
51.
go back to reference Hansen TB, Veno MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44:e58.PubMedCrossRef Hansen TB, Veno MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44:e58.PubMedCrossRef
52.
go back to reference Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.PubMedPubMedCentralCrossRef Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.PubMedPubMedCentralCrossRef
54.
go back to reference Wang K, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37:2602–11.PubMedCrossRef Wang K, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37:2602–11.PubMedCrossRef
55.
go back to reference Vausort M, et al. Myocardial infarction- associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol. 2016;68:1247–8.PubMedCrossRef Vausort M, et al. Myocardial infarction- associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol. 2016;68:1247–8.PubMedCrossRef
56.
go back to reference Radka Cerychova, Romana Bohuslavova, Gabriela Pavlinkova. Adverse effects of HIF1A mutation and maternal diabetes on the offspring heart. Cerychova et al. Cardiovasc Diabetol. 2018, 17: 68. Radka Cerychova, Romana Bohuslavova, Gabriela Pavlinkova. Adverse effects of HIF1A mutation and maternal diabetes on the offspring heart. Cerychova et al. Cardiovasc Diabetol. 2018, 17: 68.
57.
go back to reference Duncan B. Sparrow. Gavin Chapman. Sally L. Dunwoodie. Gene-environment interaction impacts on heart development and embryo survival. The Company of Biologists Ltd. 2019, 146: dev172957. Duncan B. Sparrow. Gavin Chapman. Sally L. Dunwoodie. Gene-environment interaction impacts on heart development and embryo survival. The Company of Biologists Ltd. 2019, 146: dev172957.
Metadata
Title
Construction and investigation of a circRNA-associated ceRNA regulatory network in Tetralogy of Fallot
Authors
Haifei Yu
Xinrui Wang
Hua Cao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02217-w

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue