Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Cardiomyopathy | Research article

The role of Asprosin in patients with dilated cardiomyopathy

Authors: Ming-Shien Wen, Chao-Yung Wang, Jih-Kai Yeh, Chun-Chi Chen, Ming-Lung Tsai, Ming-Yun Ho, Kuo-Chun Hung, I-Chang Hsieh

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

Asprosin is a novel fasting glucogenic adipokine discovered in 2016. Asprosin induces rapid glucose releases from the liver. However, its molecular mechanisms and function are still unclear. Adaptation of energy substrates from fatty acid to glucose is recently considered a novel therapeutic target in heart failure treatment. We hypothesized that the asprosin is able to modulate cardiac mitochondrial functions and has important prognostic implications in dilated cardiomyopathy (DCM) patients.

Methods

We prospectively enrolled 50 patients (86% male, mean age 55 ± 13 years) with DCM and followed their 5-year major adverse cardiovascular events from 2012 to 2017. Comparing with healthy individuals, DCM patients had higher asprosin levels (191.2 versus 79.7 ng/mL, P < 0.01).

Results

During the 5-year follow-up in the study cohort, 16 (32.0%) patients experienced adverse cardiovascular events. Patients with lower asprosin levels (< 210 ng/mL) were associated with increased risks of adverse clinical outcomes with a hazard ratio of 7.94 (95% CI 1.88–33.50, P = 0.005) when compared patients with higher asprosin levels (≥ 210 ng/mL). Using cardiomyoblasts as a cellular model, we showed that asprosin prevented hypoxia-induced cell death and enhanced mitochondrial respiration and proton leak under hypoxia.

Conclusions

In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.
Literature
1.
go back to reference Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–33.CrossRef Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–33.CrossRef
2.
go back to reference Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure–associated hospitalizations in the United States. J Am Coll Cardiol. 2013;61:1259–67.CrossRef Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure–associated hospitalizations in the United States. J Am Coll Cardiol. 2013;61:1259–67.CrossRef
3.
go back to reference Çiçekçioğlu H, Çetin M, Duyuler PT, Özbek K. Utility of ACUTE-HF score in patients with acute heart failure. Int J Cardiol. 2020;300:208.CrossRef Çiçekçioğlu H, Çetin M, Duyuler PT, Özbek K. Utility of ACUTE-HF score in patients with acute heart failure. Int J Cardiol. 2020;300:208.CrossRef
4.
go back to reference Greene SJ, Fonarow GC, Vaduganathan M, Khan SS, Butler J, Gheorghiade M. The vulnerable phase after hospitalization for heart failure. Nat Rev Cardiol. 2015;12:220–9.CrossRef Greene SJ, Fonarow GC, Vaduganathan M, Khan SS, Butler J, Gheorghiade M. The vulnerable phase after hospitalization for heart failure. Nat Rev Cardiol. 2015;12:220–9.CrossRef
5.
go back to reference Wilcox JE, Fonarow GC, Ardehali H, Bonow RO, Butler J, Sauer AJ, et al. “Targeting the heart” in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC. 2015;3:661–9.PubMed Wilcox JE, Fonarow GC, Ardehali H, Bonow RO, Butler J, Sauer AJ, et al. “Targeting the heart” in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC. 2015;3:661–9.PubMed
6.
go back to reference Koitabashi N, Kass DA. Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2012;9:147–57.CrossRef Koitabashi N, Kass DA. Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2012;9:147–57.CrossRef
7.
go back to reference Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709–24.CrossRef Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709–24.CrossRef
8.
go back to reference Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial energy substrate metabolism in heart failure : from pathways to therapeutic targets. Curr Pharm Des. 2015;21:3654–64.CrossRef Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial energy substrate metabolism in heart failure : from pathways to therapeutic targets. Curr Pharm Des. 2015;21:3654–64.CrossRef
9.
go back to reference Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;122(3 Pt 1):795–801.CrossRef Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;122(3 Pt 1):795–801.CrossRef
10.
go back to reference Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973–6.CrossRef Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973–6.CrossRef
11.
go back to reference Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail. 2014;7:1022–31.CrossRef Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail. 2014;7:1022–31.CrossRef
12.
go back to reference Chen Q, Younus M, Thompson J, Hu Y, Hollander JM, Lesnefsky EJ. Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2018;314:H787–95.CrossRef Chen Q, Younus M, Thompson J, Hu Y, Hollander JM, Lesnefsky EJ. Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2018;314:H787–95.CrossRef
13.
go back to reference Hafstad AD, Nabeebaccus AA, Shah AM. Novel aspects of ROS signalling in heart failure. Basic Res Cardiol. 2013;108:359.CrossRef Hafstad AD, Nabeebaccus AA, Shah AM. Novel aspects of ROS signalling in heart failure. Basic Res Cardiol. 2013;108:359.CrossRef
14.
go back to reference Sarma S, Ardehali H, Gheorghiade M. Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev. 2012;17:35–43.CrossRef Sarma S, Ardehali H, Gheorghiade M. Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev. 2012;17:35–43.CrossRef
15.
go back to reference Saotome M, Ikoma T, Hasan P, Maekawa Y. Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci. 2019;20(14):3552. Saotome M, Ikoma T, Hasan P, Maekawa Y. Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci. 2019;20(14):3552.
16.
go back to reference Borlak J, Thum T. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 2003;17:1592–608.CrossRef Borlak J, Thum T. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 2003;17:1592–608.CrossRef
17.
go back to reference Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C, et al. Asprosin is a centrally acting orexigenic hormone. Nat Med. 2017;23:1444–53.CrossRef Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C, et al. Asprosin is a centrally acting orexigenic hormone. Nat Med. 2017;23:1444–53.CrossRef
18.
go back to reference Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, et al. Asprosin, a fasting-induced Glucogenic protein hormone. Cell. 2016;165:566–79.CrossRef Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, et al. Asprosin, a fasting-induced Glucogenic protein hormone. Cell. 2016;165:566–79.CrossRef
19.
go back to reference Greenhill C. Liver: Asprosin - new hormone involved in hepatic glucose release. Nat Rev Endocrinol. 2016;12:312.CrossRef Greenhill C. Liver: Asprosin - new hormone involved in hepatic glucose release. Nat Rev Endocrinol. 2016;12:312.CrossRef
20.
go back to reference Jung TW, Kim H-C, Kim HU, Park T, Park J, Kim U, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234:20888–99.CrossRef Jung TW, Kim H-C, Kim HU, Park T, Park J, Kim U, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234:20888–99.CrossRef
21.
go back to reference Li E, Shan H, Chen L, Long A, Zhang Y, Liu Y, et al. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metab. 2019;30:319–28 e8.CrossRef Li E, Shan H, Chen L, Long A, Zhang Y, Liu Y, et al. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metab. 2019;30:319–28 e8.CrossRef
22.
go back to reference Wang C-Y, Lin T-A, Liu K-H, Liao C-H, Liu Y-Y, Wu VC-C, et al. Serum asprosin levels and bariatric surgery outcomes in obese adults. Int J Obes. 2019;43:1019–25.CrossRef Wang C-Y, Lin T-A, Liu K-H, Liao C-H, Liu Y-Y, Wu VC-C, et al. Serum asprosin levels and bariatric surgery outcomes in obese adults. Int J Obes. 2019;43:1019–25.CrossRef
23.
go back to reference Yeh J-K, Liu W-H, Wang C-Y, Lu J-J, Chen C-H, Wu-Chou Y-H, et al. Targeted next generation sequencing for genetic mutations of dilated cardiomyopathy. Acta Cardiol Sin. 2019;35:571–84.PubMedPubMedCentral Yeh J-K, Liu W-H, Wang C-Y, Lu J-J, Chen C-H, Wu-Chou Y-H, et al. Targeted next generation sequencing for genetic mutations of dilated cardiomyopathy. Acta Cardiol Sin. 2019;35:571–84.PubMedPubMedCentral
24.
go back to reference van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison. J Am Coll Cardiol. 2019;73:2756–68.CrossRef van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison. J Am Coll Cardiol. 2019;73:2756–68.CrossRef
25.
go back to reference Wei F, Long A, Wang Y. The Asprosin-OLFR734 hormonal signaling axis modulates male fertility. Cell Discov. 2019;5:55.CrossRef Wei F, Long A, Wang Y. The Asprosin-OLFR734 hormonal signaling axis modulates male fertility. Cell Discov. 2019;5:55.CrossRef
26.
go back to reference McCullough M, Caraballo C, Ravindra NG, Miller PE, Mezzacappa C, Levin A, et al. Neurohormonal blockade and clinical outcomes in patients with heart failure supported by left ventricular assist devices. JAMA Cardiol. 2019;5(2):175–82. McCullough M, Caraballo C, Ravindra NG, Miller PE, Mezzacappa C, Levin A, et al. Neurohormonal blockade and clinical outcomes in patients with heart failure supported by left ventricular assist devices. JAMA Cardiol. 2019;5(2):175–82.
27.
go back to reference Li X, Chen C, Gan F, Wang Y, Ding L, Hua W. Plasma NT pro-BNP, hs-CRP and big-ET levels at admission as prognostic markers of survival in hospitalized patients with dilated cardiomyopathy: a single-center cohort study. BMC Cardiovasc Disord. 2014;14:67.CrossRef Li X, Chen C, Gan F, Wang Y, Ding L, Hua W. Plasma NT pro-BNP, hs-CRP and big-ET levels at admission as prognostic markers of survival in hospitalized patients with dilated cardiomyopathy: a single-center cohort study. BMC Cardiovasc Disord. 2014;14:67.CrossRef
28.
go back to reference Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS, et al. BNP consensus panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail. 2004;10:1–30.CrossRef Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS, et al. BNP consensus panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail. 2004;10:1–30.CrossRef
29.
go back to reference Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127:500–7 discussion 508.CrossRef Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127:500–7 discussion 508.CrossRef
30.
go back to reference Chang J-C, Hu W-F, Lee W-S, Lin J-H, Ting P-C, Chang H-R, et al. Intermittent hypoxia induces autophagy to protect Cardiomyocytes from endoplasmic reticulum stress and apoptosis. Front Physiol. 2019;10:995.CrossRef Chang J-C, Hu W-F, Lee W-S, Lin J-H, Ting P-C, Chang H-R, et al. Intermittent hypoxia induces autophagy to protect Cardiomyocytes from endoplasmic reticulum stress and apoptosis. Front Physiol. 2019;10:995.CrossRef
31.
go back to reference Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.CrossRef Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.CrossRef
32.
go back to reference Turer A, Altamirano F, Schiattarella GG, May H, Gillette TG, Malloy CR, et al. Remodeling of substrate consumption in the murine sTAC model of heart failure. J Mol Cell Cardiol. 2019;134:144–53.CrossRef Turer A, Altamirano F, Schiattarella GG, May H, Gillette TG, Malloy CR, et al. Remodeling of substrate consumption in the murine sTAC model of heart failure. J Mol Cell Cardiol. 2019;134:144–53.CrossRef
33.
go back to reference de Las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Dávila-Román VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension. 2003;41:83–7.CrossRef de Las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Dávila-Román VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension. 2003;41:83–7.CrossRef
Metadata
Title
The role of Asprosin in patients with dilated cardiomyopathy
Authors
Ming-Shien Wen
Chao-Yung Wang
Jih-Kai Yeh
Chun-Chi Chen
Ming-Lung Tsai
Ming-Yun Ho
Kuo-Chun Hung
I-Chang Hsieh
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01680-1

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue