Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Diabetes | Research article

Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients

Authors: Mitsuhiro Kunimoto, Kazunori Shimada, Miho Yokoyama, Tomomi Matsubara, Tatsuro Aikawa, Shohei Ouchi, Megumi Shimizu, Kosuke Fukao, Tetsuro Miyazaki, Tomoyasu Kadoguchi, Kei Fujiwara, Abidan Abulimiti, Akio Honzawa, Miki Yamada, Akie Shimada, Taira Yamamoto, Tohru Asai, Atsushi Amano, Andries J. Smit, Hiroyuki Daida

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

Advanced glycation end products (AGEs) are associated with aging, diabetes mellitus (DM), and other chronic diseases. Recently, the accumulation of AGEs can be evaluated by skin autofluorescence (SAF). However, the relationship between SAF levels and exercise capacity in patients with cardiovascular disease (CVD) remains unclear. This study aimed to investigate the association between the tissue accumulation of AGEs and clinical characteristics, including exercise capacity, in patients with CVD.

Methods

We enrolled 319 consecutive CVD patients aged ≥40 years who underwent early phase II cardiac rehabilitation (CR) at our university hospital between November 2015 and September 2017. Patient background, clinical data, and the accumulation of AGEs assessed by SAF were recorded at the beginning of CR. Characteristics were compared between two patient groups divided according to the median SAF level (High SAF and Low SAF).

Results

The High SAF group was significantly older and exhibited a higher prevalence of DM than the Low SAF group. The sex ratio did not differ between the two groups. AGE levels showed significant negative correlations with peak oxygen uptake and ventilator efficiency (both P <  0.0001). Exercise capacity was significantly lower in the high SAF group than in the low SAF group, regardless of the presence or absence of DM (P <  0.05). A multivariate logistic regression analysis showed that SAF level was an independent factor associated with reduced exercise capacity (odds ratio 2.10; 95% confidence interval 1.13–4.05; P = 0.02).

Conclusion

High levels of tissue accumulated AGEs, as assessed by SAF, were significantly and independently associated with reduced exercise capacity. These data suggest that measuring the tissue accumulation of AGEs may be useful in patients who have undergone CR, irrespective of whether they have DM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.PubMedCrossRef Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.PubMedCrossRef
2.
go back to reference Leeper NJ, Myers J, Zhou M, Nead KT, Syed A, Kojima Y, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2013;57(3):728–33.PubMedCrossRef Leeper NJ, Myers J, Zhou M, Nead KT, Syed A, Kojima Y, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2013;57(3):728–33.PubMedCrossRef
3.
go back to reference Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.PubMedCrossRef Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.PubMedCrossRef
4.
go back to reference Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.PubMedCrossRef Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.PubMedCrossRef
5.
go back to reference Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.PubMedCrossRef Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.PubMedCrossRef
6.
go back to reference Osada N, Chaitman BR, Miller LW, Yip D, Cishek MB, Wolford TL, et al. Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 1998;31(3):577–82.PubMedCrossRef Osada N, Chaitman BR, Miller LW, Yip D, Cishek MB, Wolford TL, et al. Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 1998;31(3):577–82.PubMedCrossRef
7.
go back to reference Zugck C, Haunstetter A, Kruger C, Kell R, Schellberg D, Kubler W, et al. Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart failure. J Am Coll Cardiol. 2002;39(10):1615–22.PubMedCrossRef Zugck C, Haunstetter A, Kruger C, Kell R, Schellberg D, Kubler W, et al. Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart failure. J Am Coll Cardiol. 2002;39(10):1615–22.PubMedCrossRef
8.
go back to reference Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRef Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRef
9.
go back to reference Prasad K, Dhar I, Caspar-Bell G. Role of advanced Glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol. 2015;24(2):75–80.PubMed Prasad K, Dhar I, Caspar-Bell G. Role of advanced Glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol. 2015;24(2):75–80.PubMed
11.
go back to reference Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin N Am. 2014;43(1):41–57.CrossRef Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol Metab Clin N Am. 2014;43(1):41–57.CrossRef
12.
go back to reference Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009;64(1):132–7.PubMedCrossRef Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009;64(1):132–7.PubMedCrossRef
13.
go back to reference Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5.PubMedCrossRef Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5.PubMedCrossRef
14.
go back to reference Yamagishi S, Fukami K, Matsui T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: a novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 2015;185:263–8.PubMedCrossRef Yamagishi S, Fukami K, Matsui T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: a novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 2015;185:263–8.PubMedCrossRef
15.
go back to reference Cavero-Redondo I, Soriano-Cano A, Alvarez-Bueno C, Cunha PG, Martinez-Hortelano JA, Garrido-Miguel M, et al. Skin autofluorescence-indicated advanced Glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833.PubMedPubMedCentralCrossRef Cavero-Redondo I, Soriano-Cano A, Alvarez-Bueno C, Cunha PG, Martinez-Hortelano JA, Garrido-Miguel M, et al. Skin autofluorescence-indicated advanced Glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833.PubMedPubMedCentralCrossRef
16.
go back to reference van Waateringe RP, Fokkens BT, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk JV, Graaff R, et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia. 2019;62(2):269–80.PubMedCrossRef van Waateringe RP, Fokkens BT, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk JV, Graaff R, et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia. 2019;62(2):269–80.PubMedCrossRef
17.
go back to reference Kato M, Kubo A, Sugioka Y, Mitsui R, Fukuhara N, Nihei F, et al. Relationship between advanced glycation end-product accumulation and low skeletal muscle mass in Japanese men and women. Geriatr Gerontol Int. 2017;17(5):785–90.PubMedCrossRef Kato M, Kubo A, Sugioka Y, Mitsui R, Fukuhara N, Nihei F, et al. Relationship between advanced glycation end-product accumulation and low skeletal muscle mass in Japanese men and women. Geriatr Gerontol Int. 2017;17(5):785–90.PubMedCrossRef
18.
go back to reference Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30.PubMedCrossRef Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30.PubMedCrossRef
20.
go back to reference Lutgers HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2654–9.PubMedCrossRef Lutgers HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2654–9.PubMedCrossRef
21.
go back to reference Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.PubMedCrossRef Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.PubMedCrossRef
22.
go back to reference Nishitani M, Shimada K, Masaki M, Sunayama S, Kume A, Fukao K, et al. Effect of cardiac rehabilitation on muscle mass, muscle strength, and exercise tolerance in diabetic patients after coronary artery bypass grafting. J Cardiol. 2013;61(3):216–21.PubMedCrossRef Nishitani M, Shimada K, Masaki M, Sunayama S, Kume A, Fukao K, et al. Effect of cardiac rehabilitation on muscle mass, muscle strength, and exercise tolerance in diabetic patients after coronary artery bypass grafting. J Cardiol. 2013;61(3):216–21.PubMedCrossRef
23.
go back to reference Nishitani-Yokoyama M, Miyauchi K, Shimada K, Yokoyama T, Ouchi S, Aikawa T, et al. Impact of physical activity on coronary plaque volume and components in acute coronary syndrome patients after early phase II cardiac rehabilitation. Circ J. 2018;83(1):101–9.PubMedCrossRef Nishitani-Yokoyama M, Miyauchi K, Shimada K, Yokoyama T, Ouchi S, Aikawa T, et al. Impact of physical activity on coronary plaque volume and components in acute coronary syndrome patients after early phase II cardiac rehabilitation. Circ J. 2018;83(1):101–9.PubMedCrossRef
24.
go back to reference Kunimoto M, Shimada K, Yokoyama M, Matsubara T, Aikawa T, Ouchi S, et al. Relationship between the Kihon checklist and the clinical parameters in patients who participated in cardiac rehabilitation. Geriatr Gerontol Int. 2019;19(4):287–92.PubMedCrossRef Kunimoto M, Shimada K, Yokoyama M, Matsubara T, Aikawa T, Ouchi S, et al. Relationship between the Kihon checklist and the clinical parameters in patients who participated in cardiac rehabilitation. Geriatr Gerontol Int. 2019;19(4):287–92.PubMedCrossRef
25.
go back to reference Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82.PubMedCrossRef Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82.PubMedCrossRef
26.
go back to reference Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.PubMedCrossRef Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.PubMedCrossRef
27.
go back to reference Kunitomi M, Takahashi K, Wada J, Suzuki H, Miyatake N, Ogawa S, et al. Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold. Diabetes Res Clin Pract. 2000;50(2):109–15.PubMedCrossRef Kunitomi M, Takahashi K, Wada J, Suzuki H, Miyatake N, Ogawa S, et al. Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold. Diabetes Res Clin Pract. 2000;50(2):109–15.PubMedCrossRef
28.
go back to reference Nishitani M, Shimada K, Sunayama S, Masaki Y, Kume A, Fukao K, et al. Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J Cardiol. 2011;58(2):173–80.PubMedCrossRef Nishitani M, Shimada K, Sunayama S, Masaki Y, Kume A, Fukao K, et al. Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J Cardiol. 2011;58(2):173–80.PubMedCrossRef
30.
go back to reference Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.PubMedPubMedCentralCrossRef Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.PubMedPubMedCentralCrossRef
31.
go back to reference Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.PubMedCrossRef Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.PubMedCrossRef
32.
go back to reference Uruska A, Gandecka A, Araszkiewicz A, Zozulinska-Ziolkiewicz D. Accumulation of advanced glycation end products in the skin is accelerated in relation to insulin resistance in people with type 1 diabetes mellitus. Diabet Med. 2019;36(5):620–5. Uruska A, Gandecka A, Araszkiewicz A, Zozulinska-Ziolkiewicz D. Accumulation of advanced glycation end products in the skin is accelerated in relation to insulin resistance in people with type 1 diabetes mellitus. Diabet Med. 2019;36(5):620–5.
33.
go back to reference Tahara N, Yamagishi S, Matsui T, Takeuchi M, Nitta Y, Kodama N, et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther. 2012;30(1):42–8.PubMedCrossRef Tahara N, Yamagishi S, Matsui T, Takeuchi M, Nitta Y, Kodama N, et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther. 2012;30(1):42–8.PubMedCrossRef
34.
go back to reference Knaub LA, McCune S, Chicco AJ, Miller M, Moore RL, Birdsey N, et al. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res. 2013;10(3):222–38.PubMedCrossRef Knaub LA, McCune S, Chicco AJ, Miller M, Moore RL, Birdsey N, et al. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res. 2013;10(3):222–38.PubMedCrossRef
35.
go back to reference Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47(10):1727–34.PubMedCrossRef Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004;47(10):1727–34.PubMedCrossRef
36.
37.
go back to reference Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.PubMedCrossRef Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.PubMedCrossRef
38.
go back to reference Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8.PubMedCrossRef Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8.PubMedCrossRef
39.
go back to reference Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.PubMedCrossRef Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.PubMedCrossRef
41.
go back to reference Fontes-Carvalho R, Sampaio F, Teixeira M, Rocha-Gonçalves F, Gama V, Azevedo A, et al. Left ventricular diastolic dysfunction and E/E' ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction. Clin Cardiol. 2015;38(4):222–9.PubMedPubMedCentralCrossRef Fontes-Carvalho R, Sampaio F, Teixeira M, Rocha-Gonçalves F, Gama V, Azevedo A, et al. Left ventricular diastolic dysfunction and E/E' ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction. Clin Cardiol. 2015;38(4):222–9.PubMedPubMedCentralCrossRef
42.
go back to reference Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging:implications for exercise training. Sports Med. 2003;33(12):877–88.PubMedCrossRef Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging:implications for exercise training. Sports Med. 2003;33(12):877–88.PubMedCrossRef
43.
go back to reference Luevano-Contreras C, Gomez-Ojeda A, Macias-Cervantes MH, Garay-Sevilla ME. Dietary advanced Glycation end products and Cardiometabolic risk. Curr Diab Rep. 2017;17(8):63.PubMedCrossRef Luevano-Contreras C, Gomez-Ojeda A, Macias-Cervantes MH, Garay-Sevilla ME. Dietary advanced Glycation end products and Cardiometabolic risk. Curr Diab Rep. 2017;17(8):63.PubMedCrossRef
44.
go back to reference Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.PubMedCrossRef Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.PubMedCrossRef
45.
go back to reference Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Med Cell Longev. 2015;2015:534873.CrossRef Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxidative Med Cell Longev. 2015;2015:534873.CrossRef
46.
go back to reference Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–31.PubMedCrossRef Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–31.PubMedCrossRef
47.
go back to reference Ribisl PM, Lang W, Jaramillo SA, Jakicic JM, Stewart KJ, Bahnson J, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–84.PubMedCrossRef Ribisl PM, Lang W, Jaramillo SA, Jakicic JM, Stewart KJ, Bahnson J, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–84.PubMedCrossRef
48.
go back to reference Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef
49.
go back to reference Rovira-Llopis S, Banuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentralCrossRef Rovira-Llopis S, Banuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentralCrossRef
50.
go back to reference Koetsier M, Nur E, Chunmao H, Lutgers HL, Links TP, Smit AJ, et al. Skin color independent assessment of aging using skin autofluorescence. Opt Express. 2010;18(14):14416–29.PubMedCrossRef Koetsier M, Nur E, Chunmao H, Lutgers HL, Links TP, Smit AJ, et al. Skin color independent assessment of aging using skin autofluorescence. Opt Express. 2010;18(14):14416–29.PubMedCrossRef
51.
go back to reference Mulder DJ, Water TV, Lutgers HL, Graaff R, Gans RO, Zijlstra F, et al. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006;8(5):523–35.PubMedCrossRef Mulder DJ, Water TV, Lutgers HL, Graaff R, Gans RO, Zijlstra F, et al. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006;8(5):523–35.PubMedCrossRef
52.
go back to reference Noordzij MJ, Lefrandt JD, Graaff R, Smit AJ. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol Ther. 2011;13(2):165–70.PubMedCrossRef Noordzij MJ, Lefrandt JD, Graaff R, Smit AJ. Dermal factors influencing measurement of skin autofluorescence. Diabetes Technol Ther. 2011;13(2):165–70.PubMedCrossRef
Metadata
Title
Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients
Authors
Mitsuhiro Kunimoto
Kazunori Shimada
Miho Yokoyama
Tomomi Matsubara
Tatsuro Aikawa
Shohei Ouchi
Megumi Shimizu
Kosuke Fukao
Tetsuro Miyazaki
Tomoyasu Kadoguchi
Kei Fujiwara
Abidan Abulimiti
Akio Honzawa
Miki Yamada
Akie Shimada
Taira Yamamoto
Tohru Asai
Atsushi Amano
Andries J. Smit
Hiroyuki Daida
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Diabetes
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01484-3

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue