Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Arterial Diseases | Research article

Influence of microcirculation load on FFR in coronary artery stenosis model

Authors: Hongzeng Xu, Jing Liu, Donghui Zhou, Yuanzhe Jin

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background

The coronary artery hemodynamics are impacted by both the macrocirculation and microcirculation. Whether microcirculation load impact the functional assessment of a coronary artery stenosis is unknown. The purpose of this study is to investigate the effect of porous media of the microcirculation on fractional flow reserve (FFR) in stenotic coronary artery model.

Methods

A three dimensional computational simulation of blood flow in coronary artery symmetric stenotic model was constructed. The computational fluid dynamics (CFD) model was developed with Fluent 16.0. Blood was modeled as a shear thinning, non-Newtonian fluid with the Carreau model. A seepage outlet boundary condition and transient inlet conditions were imposed on the model. Coronary physiologica diagnostic parameter such as pressure, velocity and fractional flow reserve (FFR) were investigated in the model and compared with the microcirculation load (ML) and constant pressure load (PL) condition.

Results

The present study showed the different hemodynamics in the ML and PL condition. The pre-stenotic pressure is almost the same in the two model. However the pressure in the post-stenotic artery domain is much lower in the PL model. The fluctuation range of the pressures is much higher in ML model than those in PL model. The velocity flow was more steady and lower in the ML model. For the PL model with 75% artery stenosis the FFR was 0.776, while for the ML model with the same stenosis, the FFR was 0.813.

Conclusions

This study provides evidence that FFR increased in the presentation of ML condition. There is a strong hemodynamic effect of microcirculation on coronary artery stenosis.
Literature
1.
go back to reference Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Comprehensive Physiology. 2017;7(2):321–82.CrossRef Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Comprehensive Physiology. 2017;7(2):321–82.CrossRef
2.
go back to reference Garcia D, Harbaoui B, van de Hoef TP, Meuwissen M, Nijjer SS, Echavarria-Pinto M, Davies JE, Piek JJ, Lantelme P. Relationship between FFR, CFR and coronary microvascular resistance - practical implications for FFR-guided percutaneous coronary intervention. PLoS One. 2019;14(1):e0208612.CrossRef Garcia D, Harbaoui B, van de Hoef TP, Meuwissen M, Nijjer SS, Echavarria-Pinto M, Davies JE, Piek JJ, Lantelme P. Relationship between FFR, CFR and coronary microvascular resistance - practical implications for FFR-guided percutaneous coronary intervention. PLoS One. 2019;14(1):e0208612.CrossRef
3.
go back to reference Murai T, Lee T, Yonetsu T, Isobe M, Kakuta T. Influence of microvascular resistance on fractional flow reserve after successful percutaneous coronary intervention. Cathet Cardiovasc Interv : Official J Soc Cardiac Angiography Interv. 2015;85(4):585–92.CrossRef Murai T, Lee T, Yonetsu T, Isobe M, Kakuta T. Influence of microvascular resistance on fractional flow reserve after successful percutaneous coronary intervention. Cathet Cardiovasc Interv : Official J Soc Cardiac Angiography Interv. 2015;85(4):585–92.CrossRef
4.
go back to reference Titterington JS, Hung OY, Wenger NK. Microvascular angina: an update on diagnosis and treatment. Futur Cardiol. 2015;11(2):229–42.CrossRef Titterington JS, Hung OY, Wenger NK. Microvascular angina: an update on diagnosis and treatment. Futur Cardiol. 2015;11(2):229–42.CrossRef
5.
go back to reference van de Hoef TP, Nolte F, EchavarrIa-Pinto M, van Lavieren MA, Damman P, Chamuleau SA, Voskuil M, Verberne HJ, Henriques JP, van Eck-Smit BL, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–9.CrossRef van de Hoef TP, Nolte F, EchavarrIa-Pinto M, van Lavieren MA, Damman P, Chamuleau SA, Voskuil M, Verberne HJ, Henriques JP, van Eck-Smit BL, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–9.CrossRef
6.
go back to reference Yong AS, Ho M, Shah MG, Ng MK, Fearon WF. Coronary microcirculatory resistance is independent of epicardial stenosis. Circ Cardiovasc Interv. 2012;5(1):103–8 S101-102.CrossRef Yong AS, Ho M, Shah MG, Ng MK, Fearon WF. Coronary microcirculatory resistance is independent of epicardial stenosis. Circ Cardiovasc Interv. 2012;5(1):103–8 S101-102.CrossRef
7.
go back to reference Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, De Bruyne B, Pijls NH. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation. 2004;110(15):2137–42.CrossRef Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, De Bruyne B, Pijls NH. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation. 2004;110(15):2137–42.CrossRef
8.
go back to reference Li B, Li X. A liquid-solid coupling hemodynamic model with microcirculation load. Appl Sci. 2016;6(1):28.CrossRef Li B, Li X. A liquid-solid coupling hemodynamic model with microcirculation load. Appl Sci. 2016;6(1):28.CrossRef
9.
go back to reference Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, Bax M, de Jong A, Spaan JA, Piek JJ. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103(2):184–7.CrossRef Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, Bax M, de Jong A, Spaan JA, Piek JJ. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103(2):184–7.CrossRef
10.
go back to reference Giacinta G, Paola Giuseppina C, Alda H, Doralisa M, William MC, Mario M. Microvascular function/dysfunction downstream a coronary stenosis. Curr Pharm Des. 2013;19(13):2366–74.CrossRef Giacinta G, Paola Giuseppina C, Alda H, Doralisa M, William MC, Mario M. Microvascular function/dysfunction downstream a coronary stenosis. Curr Pharm Des. 2013;19(13):2366–74.CrossRef
11.
go back to reference Chen X, Gao Y, Lu B, Jia X, Zhong L, Kassab GS, Tan W, Huo Y. Hemodynamics in coronary arterial tree of serial Stenoses. PLoS One. 2016;11(9):e0163715.CrossRef Chen X, Gao Y, Lu B, Jia X, Zhong L, Kassab GS, Tan W, Huo Y. Hemodynamics in coronary arterial tree of serial Stenoses. PLoS One. 2016;11(9):e0163715.CrossRef
12.
go back to reference Coccarelli A, Prakash A, Nithiarasu P. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models. Biomech Model Mechanobiol. 2019;18(4):939–51.CrossRef Coccarelli A, Prakash A, Nithiarasu P. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models. Biomech Model Mechanobiol. 2019;18(4):939–51.CrossRef
13.
go back to reference Debbaut C, Vierendeels J, Casteleyn C, Cornillie P, Van Loo D, Simoens P, Van Hoorebeke L, Monbaliu D, Segers P. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J Biomech Eng. 2012;134(1):011003.CrossRef Debbaut C, Vierendeels J, Casteleyn C, Cornillie P, Van Loo D, Simoens P, Van Hoorebeke L, Monbaliu D, Segers P. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J Biomech Eng. 2012;134(1):011003.CrossRef
14.
go back to reference Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One. 2013;8(6):e67025.CrossRef Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One. 2013;8(6):e67025.CrossRef
15.
go back to reference Khaled ARA, Vafai K. The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf. 2003;46(26):4989–5003.CrossRef Khaled ARA, Vafai K. The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf. 2003;46(26):4989–5003.CrossRef
16.
go back to reference Elhanafy A, Guaily A, Elsaid A. Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties. Math Comput Simul. 2019;160:55–71.CrossRef Elhanafy A, Guaily A, Elsaid A. Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties. Math Comput Simul. 2019;160:55–71.CrossRef
17.
go back to reference Doutel E, Pinto SI, Campos JB, Miranda JM. Link between deviations from Murray's law and occurrence of low wall shear stress regions in the left coronary artery. J Theor Biol. 2016;402:89–99.CrossRef Doutel E, Pinto SI, Campos JB, Miranda JM. Link between deviations from Murray's law and occurrence of low wall shear stress regions in the left coronary artery. J Theor Biol. 2016;402:89–99.CrossRef
18.
go back to reference He F, Hua L, L-j G. A hemodynamic model with a seepage condition and fluid–structure interactions for blood flow in arteries with symmetric stenosis. J Biol Phys. 2019;45(2):183–92.CrossRef He F, Hua L, L-j G. A hemodynamic model with a seepage condition and fluid–structure interactions for blood flow in arteries with symmetric stenosis. J Biol Phys. 2019;45(2):183–92.CrossRef
19.
go back to reference Narayan O, Leung MC, Wong DT, Meredith IT, Cameron JD. Percutaneous coronary intervention enhances accelerative wave intensity in coronary arteries. PLoS One. 2015;10(12):e0142998.CrossRef Narayan O, Leung MC, Wong DT, Meredith IT, Cameron JD. Percutaneous coronary intervention enhances accelerative wave intensity in coronary arteries. PLoS One. 2015;10(12):e0142998.CrossRef
20.
go back to reference Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Phys. 1989;256(2 Pt 2):H383–90. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Phys. 1989;256(2 Pt 2):H383–90.
21.
go back to reference Duncker DJ, Koller A, Merkus D, Canty JM Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57(5):409–22.CrossRef Duncker DJ, Koller A, Merkus D, Canty JM Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57(5):409–22.CrossRef
22.
go back to reference Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59(12):1045–57.CrossRef Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59(12):1045–57.CrossRef
23.
go back to reference Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.CrossRef Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.CrossRef
24.
go back to reference He F, Hua L, Gao LJ. A seepage outlet boundary condition in hemodynamics modeling. Biom Technik Biomed Eng. 2017;62(5):521–7. He F, Hua L, Gao LJ. A seepage outlet boundary condition in hemodynamics modeling. Biom Technik Biomed Eng. 2017;62(5):521–7.
25.
go back to reference Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, T Veer M V, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.CrossRef Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, T Veer M V, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.CrossRef
26.
go back to reference Parikh RV, Liu G, Plomondon ME, Sehested TSG, Hlatky MA, Waldo SW, Fearon WF. Utilization and outcomes of measuring fractional flow Reserve in Patients with Stable Ischemic Heart Disease. J Am Coll Cardiol. 2020;75(4):409–19.CrossRef Parikh RV, Liu G, Plomondon ME, Sehested TSG, Hlatky MA, Waldo SW, Fearon WF. Utilization and outcomes of measuring fractional flow Reserve in Patients with Stable Ischemic Heart Disease. J Am Coll Cardiol. 2020;75(4):409–19.CrossRef
27.
go back to reference De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17.CrossRef De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17.CrossRef
28.
go back to reference Zimmermann FM, Omerovic E, Fournier S, Kelbaek H, Johnson NP, Rothenbuhler M, Xaplanteris P, Abdel-Wahab M, Barbato E, Hofsten DE, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J. 2019;40(2):180–6.CrossRef Zimmermann FM, Omerovic E, Fournier S, Kelbaek H, Johnson NP, Rothenbuhler M, Xaplanteris P, Abdel-Wahab M, Barbato E, Hofsten DE, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J. 2019;40(2):180–6.CrossRef
29.
go back to reference van de Hoef TP, Meuwissen M, Piek JJ. Fractional flow reserve-guided percutaneous coronary intervention: where to after FAME 2? Vasc Health Risk Manag. 2015;11:613–22.CrossRef van de Hoef TP, Meuwissen M, Piek JJ. Fractional flow reserve-guided percutaneous coronary intervention: where to after FAME 2? Vasc Health Risk Manag. 2015;11:613–22.CrossRef
30.
go back to reference Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol. 2010;105(1):1–5.CrossRef Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol. 2010;105(1):1–5.CrossRef
31.
go back to reference Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.CrossRef Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.CrossRef
32.
go back to reference Muller-Delp JM. The coronary microcirculation in health and disease. Isrn Physiology. 2013;2013(2):221–31. Muller-Delp JM. The coronary microcirculation in health and disease. Isrn Physiology. 2013;2013(2):221–31.
Metadata
Title
Influence of microcirculation load on FFR in coronary artery stenosis model
Authors
Hongzeng Xu
Jing Liu
Donghui Zhou
Yuanzhe Jin
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01437-w

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue