Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Electrocardiography | Research article

Association between elevated blood glucose level and non-valvular atrial fibrillation: a report from the Guangzhou heart study

Authors: Lu Fu, Hai Deng, Wei-dong Lin, Shang-fei He, Fang-zhou Liu, Yang Liu, Xian-zhang Zhan, Xian-hong Fang, Hong-tao Liao, Wei Wei, Zi-li Liao, Li-hong Tang, Zu-yi Fu, Mu-rui Zheng, Shu-lin Wu, Yu-mei Xue

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

To estimate the prevalence of elevated blood glucose level (EBG, including type 2 diabetes mellitus and impaired fasting glucose), and its association with non-valvular atrial fibrillation (NVAF) in Guangzhou, China.

Methods

The population-based follow-up Guangzhou Heart Study collected baseline data from July 2015 to August 2017 among 12,013 permanent residents aged > 35 from 4 Guangzhou districts. Two streets (Dadong and Baiyun) in the Yuexiu District, and one street (Xiaoguwei) and two towns (Xinzao and Nancun) in the Panyu District were chosen as representative of urban and rural areas, respectively. Each participant completed a comprehensive questionnaire, and underwent physical examination, blood sample collection for laboratory testing, electrocardiography, and other evaluations. Multivariable logistic regression analyses were used to estimate the independent association between hyperglycemia and NVAF prevalence.

Results

The prevalence of EBG in overall study population was 29.9%. Compared with residents without EBG, the odds ratio (OR) for AF among residents with EBG was significantly higher (1.94, 95% confidence interval [CI]: 1.40–2.70, P <  0.001), even after multivariate adjustment for metabolic abnormalities (OR = 1.60, 95% CI: 1.14–2.25, P = 0.007), and driven by women (OR = 1.80, 95% CI: 1.12–2.91, P = 0.016).

Conclusions

In Guangzhou, China, prevalence of EBG is high among residents aged > 35 years and associated with a multivariate adjusted increase in prevalence of NVAF overall and in women.
Literature
1.
go back to reference Kannel WB, Abbott RD, Savage DD. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306:1018–22.CrossRef Kannel WB, Abbott RD, Savage DD. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306:1018–22.CrossRef
2.
go back to reference Stewart S, Hart CL, Hole DJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359–64.CrossRef Stewart S, Hart CL, Hole DJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359–64.CrossRef
3.
go back to reference Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837–47.CrossRef Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837–47.CrossRef
4.
go back to reference Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. Framingham Heart Study JAMA. 1994;271:840–4.PubMed Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. Framingham Heart Study JAMA. 1994;271:840–4.PubMed
5.
go back to reference Korantzopoulos P. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2005;293:1974 author reply 1975.PubMed Korantzopoulos P. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2005;293:1974 author reply 1975.PubMed
6.
go back to reference Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham heart study): a community-based cohort study. Lancet. 2009;373:739–45.CrossRef Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham heart study): a community-based cohort study. Lancet. 2009;373:739–45.CrossRef
7.
go back to reference Li Y, Pastori D, Guo Y, et al. Risk factors for new-onset atrial fibrillation: a focus on Asian populations. Int J Cardiol. 2018;261:92–8.CrossRef Li Y, Pastori D, Guo Y, et al. Risk factors for new-onset atrial fibrillation: a focus on Asian populations. Int J Cardiol. 2018;261:92–8.CrossRef
8.
go back to reference Huxley RR, Filion KB, Konety S. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011;108:56–62.CrossRef Huxley RR, Filion KB, Konety S. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011;108:56–62.CrossRef
9.
go back to reference Lee SS, Ae Kong K, Kim D, et al. Clinical implication of an impaired fasting glucose and prehypertension related to new onset atrial fibrillation in a healthy Asian population without underlying disease: a nationwide cohort study in Korea. Eur Heart J. 2017;38:2599–607.CrossRef Lee SS, Ae Kong K, Kim D, et al. Clinical implication of an impaired fasting glucose and prehypertension related to new onset atrial fibrillation in a healthy Asian population without underlying disease: a nationwide cohort study in Korea. Eur Heart J. 2017;38:2599–607.CrossRef
10.
go back to reference Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365:1398–405.CrossRef Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365:1398–405.CrossRef
11.
go back to reference Conen D, Ridker PM, Mora S, et al. Blood pressure and risk of developing type 2 diabetes mellitus: the Women's health study. Eur Heart J. 2007;28:2937–43.CrossRef Conen D, Ridker PM, Mora S, et al. Blood pressure and risk of developing type 2 diabetes mellitus: the Women's health study. Eur Heart J. 2007;28:2937–43.CrossRef
12.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef
13.
go back to reference Niskanen L, Laaksonen DE, Nyyssönen K, et al. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 2004;44:859–65.CrossRef Niskanen L, Laaksonen DE, Nyyssönen K, et al. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 2004;44:859–65.CrossRef
14.
go back to reference Leslie WS, Hankey CR, Lean MEJ. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. Q J Med. 2007;100:395–404.CrossRef Leslie WS, Hankey CR, Lean MEJ. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. Q J Med. 2007;100:395–404.CrossRef
15.
go back to reference Deng H, Guo P, Zheng M, et al. Epidemiological characteristics of atrial fibrillation in southern China: results from the Guangzhou heart study. Sci Rep. 2018;8:17829.CrossRef Deng H, Guo P, Zheng M, et al. Epidemiological characteristics of atrial fibrillation in southern China: results from the Guangzhou heart study. Sci Rep. 2018;8:17829.CrossRef
16.
go back to reference Zhou Z. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol. 2008;18:209–16.CrossRef Zhou Z. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol. 2008;18:209–16.CrossRef
17.
go back to reference Gallagher MM. Classification of atrial fibrillation. Am J Cardiol. 1998;82:18N–28N.CrossRef Gallagher MM. Classification of atrial fibrillation. Am J Cardiol. 1998;82:18N–28N.CrossRef
18.
go back to reference January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–104.CrossRef January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–104.CrossRef
19.
go back to reference American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diab Care. 2005;28(Suppl 1):S37–42.CrossRef American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diab Care. 2005;28(Suppl 1):S37–42.CrossRef
20.
go back to reference Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120:1640–5.CrossRef Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120:1640–5.CrossRef
21.
go back to reference Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRef Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRef
22.
go back to reference Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–25.CrossRef Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–25.CrossRef
23.
go back to reference Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham heart study. Circulation. 2004;110:1042–6.CrossRef Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham heart study. Circulation. 2004;110:1042–6.CrossRef
24.
go back to reference Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565–71.CrossRef Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565–71.CrossRef
25.
go back to reference Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol. 2005;105:315–8.CrossRef Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol. 2005;105:315–8.CrossRef
26.
go back to reference Guo Y, Tian Y, Wang H, Si Q, Wang Y, Lip GYH. Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest. 2015;147:109–19.CrossRef Guo Y, Tian Y, Wang H, Si Q, Wang Y, Lip GYH. Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest. 2015;147:109–19.CrossRef
27.
go back to reference Latini R, Staszewsky L, Sun JL, Bethel MA, Disertori M, Haffner SM, Holman RR, Chang F, Giles TD, Maggioni AP, Rutten GE, Standl E, Thomas L, Tognoni G, Califf RM, McMurray JJ. Incidence of atrial fibrillation in a population with impaired glucose tolerance: the contribution of glucose metabolism and other risk factors. A post hoc analysis of the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research trial. Am Heart J. 2013;166:935–40 e931.CrossRef Latini R, Staszewsky L, Sun JL, Bethel MA, Disertori M, Haffner SM, Holman RR, Chang F, Giles TD, Maggioni AP, Rutten GE, Standl E, Thomas L, Tognoni G, Califf RM, McMurray JJ. Incidence of atrial fibrillation in a population with impaired glucose tolerance: the contribution of glucose metabolism and other risk factors. A post hoc analysis of the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research trial. Am Heart J. 2013;166:935–40 e931.CrossRef
28.
go back to reference Schoen T, Pradhan AD, Albert CM. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J Am Coll Cardiol. 2012;60:1421–8.CrossRef Schoen T, Pradhan AD, Albert CM. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J Am Coll Cardiol. 2012;60:1421–8.CrossRef
Metadata
Title
Association between elevated blood glucose level and non-valvular atrial fibrillation: a report from the Guangzhou heart study
Authors
Lu Fu
Hai Deng
Wei-dong Lin
Shang-fei He
Fang-zhou Liu
Yang Liu
Xian-zhang Zhan
Xian-hong Fang
Hong-tao Liao
Wei Wei
Zi-li Liao
Li-hong Tang
Zu-yi Fu
Mu-rui Zheng
Shu-lin Wu
Yu-mei Xue
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1253-6

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue