Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Autopsy | Research article

Next-generation sequencing using microfluidic PCR enrichment for molecular autopsy

Authors: Hariharan Raju, James S. Ware, Jonathan R. Skinner, Paula L. Hedley, Gavin Arno, Donald R. Love, Christian van der Werf, Jacob Tfelt-Hansen, Bo Gregers Winkel, Marta C. Cohen, Xinzhong Li, Shibu John, Sanjay Sharma, Steve Jeffery, Arthur A. M. Wilde, Michael Christiansen, Mary N. Sheppard, Elijah R. Behr

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

We aimed to determine the mutation yield and clinical applicability of “molecular autopsy” following sudden arrhythmic death syndrome (SADS) by validating and utilizing low-cost high-throughput technologies: Fluidigm Access Array PCR-enrichment with Illumina HiSeq 2000 next generation sequencing (NGS).

Methods

We validated and optimized the NGS platform with a subset of 46 patients by comparison with Sanger sequencing of coding exons of major arrhythmia risk-genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, RYR2). A combined large multi-ethnic international SADS cohort was sequenced utilizing the NGS platform to determine overall molecular yield; rare variants identified by NGS were subsequently reconfirmed by Sanger sequencing.

Results

The NGS platform demonstrated 100% sensitivity for pathogenic variants as well as 87.20% sensitivity and 99.99% specificity for all substitutions (optimization subset, n = 46). The positive predictive value (PPV) for NGS for rare substitutions was 16.0% (27 confirmed rare variants of 169 positive NGS calls in 151 additional cases). The overall molecular yield in 197 multi-ethnic SADS cases (mean age 22.6 ± 14.4 years, 68% male) was 5.1% (95% confidence interval 2.0–8.1%), representing 10 cases carrying pathogenic or likely pathogenic risk-mutations.

Conclusions

Molecular autopsy with Fluidigm Access Array and Illumina HiSeq NGS utilizing a selected panel of LQTS/BrS and CPVT risk-genes offers moderate diagnostic yield, albeit requiring confirmatory Sanger-sequencing of mutational variants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Behr E, Wood DA, Wright M, Syrris P, Sheppard MN, Casey A, et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet. 2003;362:1457–9.CrossRefPubMed Behr E, Wood DA, Wright M, Syrris P, Sheppard MN, Casey A, et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet. 2003;362:1457–9.CrossRefPubMed
2.
go back to reference Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace. 2013;15:1389–406.CrossRefPubMed Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace. 2013;15:1389–406.CrossRefPubMed
3.
go back to reference Raju H, Behr ER. Unexplained sudden death, focussing on genetics and family phenotyping. Curr Opin Cardiol. 2013;28:19–25.CrossRefPubMed Raju H, Behr ER. Unexplained sudden death, focussing on genetics and family phenotyping. Curr Opin Cardiol. 2013;28:19–25.CrossRefPubMed
4.
go back to reference Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed
5.
go back to reference Winkel BG, Holst AG, Theilade J, Kristensen IB, Thomsen JL, Ottesen GL, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur Heart J. 2011;32:983–90.CrossRefPubMed Winkel BG, Holst AG, Theilade J, Kristensen IB, Thomsen JL, Ottesen GL, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur Heart J. 2011;32:983–90.CrossRefPubMed
6.
go back to reference Basso C, Aguilera B, Banner J, Cohle S, d’Amati G, de Gouveia RH, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch Int J Pathol. 2017; epub prior to publication. Basso C, Aguilera B, Banner J, Cohle S, d’Amati G, de Gouveia RH, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch Int J Pathol. 2017; epub prior to publication.
7.
go back to reference Behr ER, Dalageorgou C, Christiansen M, Syrris P, Hughes S, Tome Esteban MT, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheri heart disease in the majority of families. Eur Heart J. 2008;29:1670–80.CrossRefPubMed Behr ER, Dalageorgou C, Christiansen M, Syrris P, Hughes S, Tome Esteban MT, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheri heart disease in the majority of families. Eur Heart J. 2008;29:1670–80.CrossRefPubMed
8.
go back to reference Campuzano O, Allegue C, Partemi S, Iglesias A, Oliva A, Brugada R. Negative autopsy and sudden cardiac death. Int J Legal Med. 2014;128:599–606.CrossRefPubMed Campuzano O, Allegue C, Partemi S, Iglesias A, Oliva A, Brugada R. Negative autopsy and sudden cardiac death. Int J Legal Med. 2014;128:599–606.CrossRefPubMed
9.
go back to reference Tester DJ, Medeiros-Dtableomingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc Mayo Clin. 2012;87:524–39.CrossRefPubMed Tester DJ, Medeiros-Dtableomingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc Mayo Clin. 2012;87:524–39.CrossRefPubMed
10.
go back to reference Wang D, Shah KR, Um SY, Eng LS, Zhou B, Lin Y, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int. 2014;237:90–9.CrossRefPubMed Wang D, Shah KR, Um SY, Eng LS, Zhou B, Lin Y, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int. 2014;237:90–9.CrossRefPubMed
11.
go back to reference Skinner JR, Crawford J, Smith W, Aitken A, Heaven D, Evans C-A, et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm. 2011;8:412–9.CrossRefPubMed Skinner JR, Crawford J, Smith W, Aitken A, Heaven D, Evans C-A, et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm. 2011;8:412–9.CrossRefPubMed
12.
go back to reference Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the Management of Patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.CrossRefPubMed Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the Management of Patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.CrossRefPubMed
13.
go back to reference Michaud K, Mangin P, Elger BS. Genetic analysis of sudden cardiac death victims: a survey of current forensic autopsy practices. Int J Legal Med. 2011;125:359–66.CrossRefPubMed Michaud K, Mangin P, Elger BS. Genetic analysis of sudden cardiac death victims: a survey of current forensic autopsy practices. Int J Legal Med. 2011;125:359–66.CrossRefPubMed
14.
go back to reference Li X, Buckton AJ, Wilkinson SL, John S, Walsh R, Novotny T, et al. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One. 2013;8:e67744.CrossRefPubMedPubMedCentral Li X, Buckton AJ, Wilkinson SL, John S, Walsh R, Novotny T, et al. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One. 2013;8:e67744.CrossRefPubMedPubMedCentral
15.
go back to reference Behr ER, Casey A, Sheppard M, Wright M, Bowker TJ, Davies MJ, et al. Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart. 2007;93:601–5.CrossRefPubMedPubMedCentral Behr ER, Casey A, Sheppard M, Wright M, Bowker TJ, Davies MJ, et al. Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart. 2007;93:601–5.CrossRefPubMedPubMedCentral
16.
go back to reference Gladding PA, Evans C-A, Crawford J, Chung SK, Vaughan A, Webster D, et al. Posthumous diagnosis of long QT syndrome from neonatal screening cards. Heart Rhythm. 2010;7:481–6.CrossRefPubMed Gladding PA, Evans C-A, Crawford J, Chung SK, Vaughan A, Webster D, et al. Posthumous diagnosis of long QT syndrome from neonatal screening cards. Heart Rhythm. 2010;7:481–6.CrossRefPubMed
17.
go back to reference Lahrouchi N, Raju H, Lodder EM, Papatheodorou E, Ware JS, Papadakis M, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol. 2017;69:2134–45.CrossRefPubMedPubMedCentral Lahrouchi N, Raju H, Lodder EM, Papatheodorou E, Ware JS, Papadakis M, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol. 2017;69:2134–45.CrossRefPubMedPubMedCentral
18.
go back to reference Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120:1752–60.CrossRefPubMedPubMedCentral Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120:1752–60.CrossRefPubMedPubMedCentral
19.
go back to reference Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6:1297–303.CrossRefPubMedPubMedCentral Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6:1297–303.CrossRefPubMedPubMedCentral
20.
go back to reference Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP, et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol. 2009;54:2065–74.CrossRefPubMedPubMedCentral Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP, et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol. 2009;54:2065–74.CrossRefPubMedPubMedCentral
21.
go back to reference Ware JS, John S, Roberts AM, Buchan R, Gong S, Peters NS, et al. Next generation diagnostics in inherited arrhythmia syndromes : a comparison of two approaches. J Cardiovasc Transl Res. 2013;6:94–103.CrossRefPubMed Ware JS, John S, Roberts AM, Buchan R, Gong S, Peters NS, et al. Next generation diagnostics in inherited arrhythmia syndromes : a comparison of two approaches. J Cardiovasc Transl Res. 2013;6:94–103.CrossRefPubMed
22.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentral
23.
go back to reference Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral
24.
go back to reference Exome Variant Server [Internet]. The goal of the NHLBI GO Exome Sequencing Project (ESP) is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. [cited 2017 Mar 5]. Available from: http://evs.gs.washington.edu/EVS/. Exome Variant Server [Internet]. The goal of the NHLBI GO Exome Sequencing Project (ESP) is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. [cited 2017 Mar 5]. Available from: http://​evs.​gs.​washington.​edu/​EVS/​.
25.
go back to reference ExAC Browser [Internet]. The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies. [cited 2017 Mar 5]. Available from: http://exac.broadinstitute.org/ ExAC Browser [Internet]. The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies. [cited 2017 Mar 5]. Available from: http://​exac.​broadinstitute.​org/​
26.
go back to reference Wildeman M, Ophuizen EV, van Ophuizen E, den Dunnen JT, Taschner PEM. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat. 2008;29:6–13.CrossRefPubMed Wildeman M, Ophuizen EV, van Ophuizen E, den Dunnen JT, Taschner PEM. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat. 2008;29:6–13.CrossRefPubMed
27.
go back to reference LUMC Mutalyzer 2.0.23 [Internet]. The aim of this program suite is to support checks of sequence variant nomenclature according to the guidelines of the human genome variation society. [cited 2017 Mar 5]. Available from: https://www.mutalyzer.nl/. LUMC Mutalyzer 2.0.23 [Internet]. The aim of this program suite is to support checks of sequence variant nomenclature according to the guidelines of the human genome variation society. [cited 2017 Mar 5]. Available from: https://​www.​mutalyzer.​nl/​.
28.
go back to reference PolyPhen-2: prediction of functional effects of human nsSNPs [Internet]. PolyPhen-2 (Polymorphism Phenotyping v) is a tool which predicts possible impact of an amino acid substitution on the structure and function of a human protein using straightforward physical and comparative considerations. [cited 2017 Mar 5]. Available from: http://genetics.bwh.harvard.edu/pph2/ PolyPhen-2: prediction of functional effects of human nsSNPs [Internet]. PolyPhen-2 (Polymorphism Phenotyping v) is a tool which predicts possible impact of an amino acid substitution on the structure and function of a human protein using straightforward physical and comparative considerations. [cited 2017 Mar 5]. Available from: http://​genetics.​bwh.​harvard.​edu/​pph2/​
29.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.CrossRefPubMed Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.CrossRefPubMed
30.
go back to reference SIFT Home [Internet]. SIFT predicts whether an amino acid substitution affects protein function. SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments derived from closely related sequences, collected through PSI-BLAST. [cited 2017 Mar 5]. Available from: http://sift.jcvi.org/ SIFT Home [Internet]. SIFT predicts whether an amino acid substitution affects protein function. SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments derived from closely related sequences, collected through PSI-BLAST. [cited 2017 Mar 5]. Available from: http://​sift.​jcvi.​org/​
31.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.CrossRefPubMed Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.CrossRefPubMed
33.
go back to reference MutationAssessor.org /// functional impact of protein mutations [Internet]. This server predicts the functional impact of amino-acid substitutions in proteins, such as mutations discovered in cancer or missense polymorphisms. The functional impact is assessed based on evolutionary conservation of the affected amino acid in protein homologs. The method has been validated on a large set (60k) of disease associated (OMIM) and polymorphic variants. [cited 2017 Mar 5]. Available from: http://mutationassessor.org/r3/ MutationAssessor​.​org /// functional impact of protein mutations [Internet]. This server predicts the functional impact of amino-acid substitutions in proteins, such as mutations discovered in cancer or missense polymorphisms. The functional impact is assessed based on evolutionary conservation of the affected amino acid in protein homologs. The method has been validated on a large set (60k) of disease associated (OMIM) and polymorphic variants. [cited 2017 Mar 5]. Available from: http://​mutationassessor​.​org/​r3/​
35.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
36.
go back to reference 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.CrossRef 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.CrossRef
37.
go back to reference Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294:2975–80.CrossRefPubMed Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294:2975–80.CrossRefPubMed
38.
go back to reference Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019–28.CrossRefPubMedPubMedCentral Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019–28.CrossRefPubMedPubMedCentral
39.
go back to reference Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293:447–54.CrossRefPubMedPubMedCentral Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293:447–54.CrossRefPubMedPubMedCentral
40.
go back to reference Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.CrossRefPubMed Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.CrossRefPubMed
41.
go back to reference Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.CrossRefPubMed Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.CrossRefPubMed
42.
go back to reference Farrugia A, Keyser C, Hollard C, Raul JS, Muller J, Ludes B. Targeted next generation sequencing application in cardiac channelopathies: analysis of a cohort of autopsy-negative sudden unexplained deaths. Forensic Sci Int. 2015;254:5–11.CrossRefPubMed Farrugia A, Keyser C, Hollard C, Raul JS, Muller J, Ludes B. Targeted next generation sequencing application in cardiac channelopathies: analysis of a cohort of autopsy-negative sudden unexplained deaths. Forensic Sci Int. 2015;254:5–11.CrossRefPubMed
43.
go back to reference Nunn LM, Lopes LR, Syrris P, Murphy C, Plagnol V, Firman E, et al. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace. 2016;18:888–96.CrossRefPubMed Nunn LM, Lopes LR, Syrris P, Murphy C, Plagnol V, Firman E, et al. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace. 2016;18:888–96.CrossRefPubMed
44.
go back to reference Cheng J, Tester DJ, Tan B-H, Valdivia CR, Kroboth S, Ye B, et al. The common African American polymorphism SCN5A-S1103Y interacts with mutation SCN5A-R680H to increase late Na current. Physiol Genomics. 2011;43:461–6.CrossRefPubMedPubMedCentral Cheng J, Tester DJ, Tan B-H, Valdivia CR, Kroboth S, Ye B, et al. The common African American polymorphism SCN5A-S1103Y interacts with mutation SCN5A-R680H to increase late Na current. Physiol Genomics. 2011;43:461–6.CrossRefPubMedPubMedCentral
45.
go back to reference Winkel BG, Yuan L, Olesen MS, Sadjadieh G, Wang Y, Risgaard B, et al. The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome. Heart Rhythm. 2015;12:1241–9.CrossRefPubMed Winkel BG, Yuan L, Olesen MS, Sadjadieh G, Wang Y, Risgaard B, et al. The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome. Heart Rhythm. 2015;12:1241–9.CrossRefPubMed
46.
go back to reference Hwang HW, Chen JJ, Lin YJ, Shieh RC, Lee MT, Hung SI, et al. R1193Q of SCN5A, a Brugada and long QT mutation, is a common polymorphism in Han Chinese. J Med Genet. 2005;42:e7.CrossRefPubMedPubMedCentral Hwang HW, Chen JJ, Lin YJ, Shieh RC, Lee MT, Hung SI, et al. R1193Q of SCN5A, a Brugada and long QT mutation, is a common polymorphism in Han Chinese. J Med Genet. 2005;42:e7.CrossRefPubMedPubMedCentral
47.
go back to reference Eddy C-A, MacCormick JM, Chung S-K, Crawford JR, Love DR, Rees MI, et al. Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome. Heart Rhythm. 2008;5:1275–81.CrossRefPubMed Eddy C-A, MacCormick JM, Chung S-K, Crawford JR, Love DR, Rees MI, et al. Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome. Heart Rhythm. 2008;5:1275–81.CrossRefPubMed
48.
go back to reference Bansal V, Libiger O. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data. Bioinforma Oxf Engl. 2011;27:2047–53.CrossRef Bansal V, Libiger O. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data. Bioinforma Oxf Engl. 2011;27:2047–53.CrossRef
49.
go back to reference Crotti L, Lewandowska MA, Schwartz PJ, Insolia R, Pedrazzini M, Bussani E, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm. 2009;6:212–8.CrossRefPubMed Crotti L, Lewandowska MA, Schwartz PJ, Insolia R, Pedrazzini M, Bussani E, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm. 2009;6:212–8.CrossRefPubMed
50.
go back to reference Zhang L, Vincent GM, Baralle M, Baralle FE, Anson BD, Benson DW, et al. An intronic mutation causes long QT syndrome. J Am Coll Cardiol. 2004;44:1283–91.CrossRefPubMed Zhang L, Vincent GM, Baralle M, Baralle FE, Anson BD, Benson DW, et al. An intronic mutation causes long QT syndrome. J Am Coll Cardiol. 2004;44:1283–91.CrossRefPubMed
Metadata
Title
Next-generation sequencing using microfluidic PCR enrichment for molecular autopsy
Authors
Hariharan Raju
James S. Ware
Jonathan R. Skinner
Paula L. Hedley
Gavin Arno
Donald R. Love
Christian van der Werf
Jacob Tfelt-Hansen
Bo Gregers Winkel
Marta C. Cohen
Xinzhong Li
Shibu John
Sanjay Sharma
Steve Jeffery
Arthur A. M. Wilde
Michael Christiansen
Mary N. Sheppard
Elijah R. Behr
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1154-8

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue