Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Thrombosis | Research article

Bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: a meta-analysis

Authors: Alberto Polimeni, Remzi Anadol, Thomas Münzel, Martin Geyer, Salvatore De Rosa, Ciro Indolfi, Tommaso Gori

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

BRS represent a new approach to treating coronary artery disease. Beneficial properties of BRS regarding the restoration of vasomotility after resorption make them attractive devices in CTO revascularization. However, experience in this setting is limited.

Methods

We systematically searched Medline, Scholar, and Scopus for reports of at least 9 patients with CTO undergoing BRS implantation. Patients’ and procedural characteristics were summarized. The primary outcome of interest was target lesion revascularization (TLR). Pooled estimates were calculated using a random-effects meta-analysis. The study protocol was registered in PROSPERO (CRD42017069322).

Results

Thirteen reports for a total of 843 lesions with a median follow-up of 12 months (IQR 6–12) were included in the analysis. At short-term, the summary estimate rate of TLR was 2.6% (95% CI: 1 to 4%, I2 = 0%, P = 0.887) while at mid to long-term it was 3.8% (95% CI: 2 to 6%, I2 = 0%, P = 0.803). At long-term follow-up (≥12 months), the summary estimate rate of cardiac death was 1.1% (95% CI: 0 to 2%, I2 = 0%, P = 0.887). The summary estimate rates of scaffold thrombosis and clinical restenosis were respectively 0.9% (95% CI: 0 to 2%, I2 = 0%, P = 0.919) and 1.8% (95% CI: 0 to 4%, I2 = 0%, P = 0.448). Finally, the summary estimate rate of target vessel revascularization was 6.6% (95% CI: 0 to 11%, I2 = 0%, P = 0.04).

Conclusions

Implantation of BRS in a population with CTO is feasible, although further longer-term outcome studies are necessary.
Appendix
Available only for authorised users
Literature
1.
go back to reference Galassi AR, Brilakis ES, Boukhris M, et al. Appropriateness of percutaneous revascularization of coronary chronic total occlusions: an overview. Eur Heart J. 2016;37:2692–700.CrossRef Galassi AR, Brilakis ES, Boukhris M, et al. Appropriateness of percutaneous revascularization of coronary chronic total occlusions: an overview. Eur Heart J. 2016;37:2692–700.CrossRef
2.
go back to reference Jones DA, Weerackody R, Rathod K, et al. Successful recanalization of chronic total occlusions is associated with improved long-term survival. JACC Cardiovasc Interv. 2012;5:380–8.CrossRef Jones DA, Weerackody R, Rathod K, et al. Successful recanalization of chronic total occlusions is associated with improved long-term survival. JACC Cardiovasc Interv. 2012;5:380–8.CrossRef
3.
go back to reference Roffi M, Iglesias JF. CTO PCI in patients with diabetes mellitus: sweet perspectives. JACC Cardiovasc Interv. 2017;10:2182–4.CrossRef Roffi M, Iglesias JF. CTO PCI in patients with diabetes mellitus: sweet perspectives. JACC Cardiovasc Interv. 2017;10:2182–4.CrossRef
4.
go back to reference Dinesch V, Buruian M. Drug-eluting stent failure: A complex scenario. Int J Cardiol. 2017;247:26.CrossRef Dinesch V, Buruian M. Drug-eluting stent failure: A complex scenario. Int J Cardiol. 2017;247:26.CrossRef
5.
go back to reference Indolfi C, De Rosa S, Colombo A. Bioresorbable vascular scaffolds - basic concepts and clinical outcome. Nat Rev Cardio. 2016;13:719–29.CrossRef Indolfi C, De Rosa S, Colombo A. Bioresorbable vascular scaffolds - basic concepts and clinical outcome. Nat Rev Cardio. 2016;13:719–29.CrossRef
6.
go back to reference Gao R, Yang Y. Han yet al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol. 2015;66:2298–309.CrossRef Gao R, Yang Y. Han yet al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol. 2015;66:2298–309.CrossRef
7.
go back to reference Onuma Y, Sotomi Y, Shiomi H, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention. 2016;12:1090–101.CrossRef Onuma Y, Sotomi Y, Shiomi H, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention. 2016;12:1090–101.CrossRef
8.
go back to reference Chevalier B, Onuma Y, van Boven AJ, et al. Randomised comparison of a bioresorbable everolimus-eluting scaffold with a metallic everolimus-eluting stent for ischaemic heart disease caused by de novo native coronary artery lesions: the 2-year clinical outcomes of the ABSORB II trial. EuroIntervention. 2016;12:1102–7.CrossRef Chevalier B, Onuma Y, van Boven AJ, et al. Randomised comparison of a bioresorbable everolimus-eluting scaffold with a metallic everolimus-eluting stent for ischaemic heart disease caused by de novo native coronary artery lesions: the 2-year clinical outcomes of the ABSORB II trial. EuroIntervention. 2016;12:1102–7.CrossRef
9.
go back to reference Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376:2319–28.CrossRef Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376:2319–28.CrossRef
10.
go back to reference Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72:39.CrossRef Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72:39.CrossRef
11.
go back to reference Wallace BC, Dahabreh IJ, Schmid CH, Lau J, Trikalinos TA. Modernizing the systematic review process to inform comparative effectiveness: tools and methods. J Comp Eff Res. 2013;2:273–82.CrossRef Wallace BC, Dahabreh IJ, Schmid CH, Lau J, Trikalinos TA. Modernizing the systematic review process to inform comparative effectiveness: tools and methods. J Comp Eff Res. 2013;2:273–82.CrossRef
12.
go back to reference La Manna A, Chisari A, Giacchi G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus second generation drug-eluting stents for percutaneous treatment of chronic total coronary occlusions: technical and procedural outcomes from the GHOST-CTO registry. Catheter Cardiovasc Interv. 2016;88:E155–63.CrossRef La Manna A, Chisari A, Giacchi G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus second generation drug-eluting stents for percutaneous treatment of chronic total coronary occlusions: technical and procedural outcomes from the GHOST-CTO registry. Catheter Cardiovasc Interv. 2016;88:E155–63.CrossRef
13.
go back to reference Ojeda S, Pan M, Romero M, et al. Outcomes and computed tomography scan follow-up of bioresorbable vascular scaffold for the percutaneous treatment of chronic total coronary artery occlusion. Am J Cardiol. 2015;115:1487–93.CrossRef Ojeda S, Pan M, Romero M, et al. Outcomes and computed tomography scan follow-up of bioresorbable vascular scaffold for the percutaneous treatment of chronic total coronary artery occlusion. Am J Cardiol. 2015;115:1487–93.CrossRef
14.
go back to reference Wiebe J, Liebetrau C, Dörr O, et al. Feasibility of everolimuseluting bioresorbable vascular scaffolds in patients with chronic total occlusion. Int J Cardiol. 2015;179:90–4.CrossRef Wiebe J, Liebetrau C, Dörr O, et al. Feasibility of everolimuseluting bioresorbable vascular scaffolds in patients with chronic total occlusion. Int J Cardiol. 2015;179:90–4.CrossRef
15.
go back to reference Vaquerizo B, Barros A, Pujadas S, et al. One-year results of bioresorbable vascular scaffolds for coronary chronic total occlusions. Am J Cardiol. 2016;117:906–17.CrossRef Vaquerizo B, Barros A, Pujadas S, et al. One-year results of bioresorbable vascular scaffolds for coronary chronic total occlusions. Am J Cardiol. 2016;117:906–17.CrossRef
16.
17.
go back to reference Abellas-Sequeiros RA, Ocaranza-Sanchez R, Trillo-Nouche R, Gonzalez-Juanatey C, Gonzalez-Juanatey JR. Bioresorbable vascular scaffolds in coronary chronic total occlusions revascularization: safety assessment related to struts coverage and apposition in 6-month OCT follow-up. Heart Vessel. 2017. https://doi.org/10.1007/s00380-017-0980-9. Abellas-Sequeiros RA, Ocaranza-Sanchez R, Trillo-Nouche R, Gonzalez-Juanatey C, Gonzalez-Juanatey JR. Bioresorbable vascular scaffolds in coronary chronic total occlusions revascularization: safety assessment related to struts coverage and apposition in 6-month OCT follow-up. Heart Vessel. 2017. https://​doi.​org/​10.​1007/​s00380-017-0980-9.
19.
go back to reference Yamaç AH, Yıldız A, Nasifov M, Taştan A, Bashirov N, Göktekin Ö. Clinical and angiographic outcomes at more than 1 year after treatment of chronic total occlusions with the everolimus-eluting bioresorbable vascular scaffold. Turk Kardiyol Dern Ars. 2016;44:647–55.PubMed Yamaç AH, Yıldız A, Nasifov M, Taştan A, Bashirov N, Göktekin Ö. Clinical and angiographic outcomes at more than 1 year after treatment of chronic total occlusions with the everolimus-eluting bioresorbable vascular scaffold. Turk Kardiyol Dern Ars. 2016;44:647–55.PubMed
20.
go back to reference Kugler C, Markovic S, Rottbauer W, Wöhrle J. Bioresorbable scaffolds compared with everolimus-eluting stents for the treatment of chronic coronary total occlusion: clinical and angiographic results of a matched paired comparison. Coron Artery Dis. 2017;28:120–5.CrossRef Kugler C, Markovic S, Rottbauer W, Wöhrle J. Bioresorbable scaffolds compared with everolimus-eluting stents for the treatment of chronic coronary total occlusion: clinical and angiographic results of a matched paired comparison. Coron Artery Dis. 2017;28:120–5.CrossRef
21.
go back to reference Lesiak M, Łanocha M, Araszkiewicz A, et al. Percutaneous coronary intervention for chronic total occlusion of the coronary artery with the implantation of bioresorbable everolimus-eluting scaffolds. Poznan CTO-Absorb Pilot Registry. EuroIntervention. 2016;12:e144–51.CrossRef Lesiak M, Łanocha M, Araszkiewicz A, et al. Percutaneous coronary intervention for chronic total occlusion of the coronary artery with the implantation of bioresorbable everolimus-eluting scaffolds. Poznan CTO-Absorb Pilot Registry. EuroIntervention. 2016;12:e144–51.CrossRef
22.
go back to reference Özel E, Taştan A, Öztürk A, Özcan EE, Kilicaslan B, Özdogan Ö. Procedural and one-year clinical outcomes of bioresorbable vascular scaffolds for the treatment of chronic total occlusions: a single-Centre experience. Cardiovasc J Afr. 2016;27:345–9.CrossRef Özel E, Taştan A, Öztürk A, Özcan EE, Kilicaslan B, Özdogan Ö. Procedural and one-year clinical outcomes of bioresorbable vascular scaffolds for the treatment of chronic total occlusions: a single-Centre experience. Cardiovasc J Afr. 2016;27:345–9.CrossRef
23.
go back to reference Goktekin O, Yamac AH, Latib A, et al. Evaluation of the safety of Everolimus-eluting Bioresorbable vascular scaffold (BVS) implantation in patients with chronic Total coronary occlusions: acute procedural and short-term clinical results. J Invasive Cardiol. 2015;27:461–6.PubMed Goktekin O, Yamac AH, Latib A, et al. Evaluation of the safety of Everolimus-eluting Bioresorbable vascular scaffold (BVS) implantation in patients with chronic Total coronary occlusions: acute procedural and short-term clinical results. J Invasive Cardiol. 2015;27:461–6.PubMed
24.
go back to reference Fam JM, Ojeda S, Garbo R, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of complex chronic total occlusions. EuroIntervention. 2017;13:355–63.CrossRef Fam JM, Ojeda S, Garbo R, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of complex chronic total occlusions. EuroIntervention. 2017;13:355–63.CrossRef
25.
go back to reference Saad M, Abdin A, Thiele H, et al. Bioresorbable vascular scaffolds in a real-world patient population-results from a mid-term angiographic follow-up. J Interv Cardiol. 2016;29:341–7.CrossRef Saad M, Abdin A, Thiele H, et al. Bioresorbable vascular scaffolds in a real-world patient population-results from a mid-term angiographic follow-up. J Interv Cardiol. 2016;29:341–7.CrossRef
26.
go back to reference Polimeni A, Anadol R, Munzel T, Indolfi C, De Rosa S, Gori T. Long-term outcome of bioresorbable vascular scaffolds for the treatment of coronary artery disease: a meta-analysis of RCTs. BMC Cardiovasc Disord. 2017;17:147.CrossRef Polimeni A, Anadol R, Munzel T, Indolfi C, De Rosa S, Gori T. Long-term outcome of bioresorbable vascular scaffolds for the treatment of coronary artery disease: a meta-analysis of RCTs. BMC Cardiovasc Disord. 2017;17:147.CrossRef
27.
go back to reference Sorrentino S, Giustino G, Mehran R, et al. Everolimus-eluting Bioresorbable scaffolds versus Everolimus-eluting metallic stents. J Am Coll Cardiol. 2017;69:3055–66.CrossRef Sorrentino S, Giustino G, Mehran R, et al. Everolimus-eluting Bioresorbable scaffolds versus Everolimus-eluting metallic stents. J Am Coll Cardiol. 2017;69:3055–66.CrossRef
28.
go back to reference Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387:1277–89.CrossRef Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387:1277–89.CrossRef
29.
go back to reference Yang SS, Tang L, Ge GG, et al. Efficacy of drug-eluting stent for chronic total coronary occlusions at different follow-up duration: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2015;19:1101–16.PubMed Yang SS, Tang L, Ge GG, et al. Efficacy of drug-eluting stent for chronic total coronary occlusions at different follow-up duration: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2015;19:1101–16.PubMed
30.
go back to reference Colmenarez HJ, Escaned J, Fernández C, et al. Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1854–66.CrossRef Colmenarez HJ, Escaned J, Fernández C, et al. Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1854–66.CrossRef
31.
go back to reference Brugaletta S, Gomez-Lara J, Caballero J, et al. Ticagrelor versus clopidogrel for recovery of vascular function immediately after successful chronic coronary total occlusion recanalization: a randomized clinical trial. Am Heart J. 2018;204:205–9.CrossRef Brugaletta S, Gomez-Lara J, Caballero J, et al. Ticagrelor versus clopidogrel for recovery of vascular function immediately after successful chronic coronary total occlusion recanalization: a randomized clinical trial. Am Heart J. 2018;204:205–9.CrossRef
32.
go back to reference Polimeni A, Weissner M, Schochlow K, et al. Incidence, clinical presentation, and predictors of clinical restenosis in coronary Bioresorbable scaffolds. JACC Cardiovasc Interv. 2017;10:1819–27.CrossRef Polimeni A, Weissner M, Schochlow K, et al. Incidence, clinical presentation, and predictors of clinical restenosis in coronary Bioresorbable scaffolds. JACC Cardiovasc Interv. 2017;10:1819–27.CrossRef
33.
go back to reference Polimeni A, De Rosa S, Sabatino J, Sorrentino S, Indolfi C. Impact of intracoronary adenosine administration during primary PCI: a meta-analysis. Int J Cardiol. 2016;203:1032–41.CrossRef Polimeni A, De Rosa S, Sabatino J, Sorrentino S, Indolfi C. Impact of intracoronary adenosine administration during primary PCI: a meta-analysis. Int J Cardiol. 2016;203:1032–41.CrossRef
34.
go back to reference De Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave-free ratio: comparison with fractional flow reserve. Circ Cardiovasc Interv. 2018;11:e004613.PubMed De Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave-free ratio: comparison with fractional flow reserve. Circ Cardiovasc Interv. 2018;11:e004613.PubMed
35.
go back to reference De Rosa S, Sievert H, Sabatino J, Polimeni A, Sorrentino S, Indolfi C. Percutaneous closure versus medical treatment in stroke patients with patent foramen Ovale: a systematic review and meta-analysis. Ann Intern Med. 2018. https://doi.org/10.7326/M17-3033. De Rosa S, Sievert H, Sabatino J, Polimeni A, Sorrentino S, Indolfi C. Percutaneous closure versus medical treatment in stroke patients with patent foramen Ovale: a systematic review and meta-analysis. Ann Intern Med. 2018. https://​doi.​org/​10.​7326/​M17-3033.
36.
go back to reference Anadol R, Lorenz L, Weissner M, et al. Characteristics and outcome of patients with complex coronary lesions treated with bioresorbable scaffolds Three years follow-up in a cohort of consecutive patients. EuroIntervention. 2017. https://doi.org/10.4244/EIJ-D-17-00410. Anadol R, Lorenz L, Weissner M, et al. Characteristics and outcome of patients with complex coronary lesions treated with bioresorbable scaffolds Three years follow-up in a cohort of consecutive patients. EuroIntervention. 2017. https://​doi.​org/​10.​4244/​EIJ-D-17-00410.
37.
go back to reference Anadol R, Schnitzler K, Lorenz L, et al. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovasc Disord. 2018;18:92.CrossRef Anadol R, Schnitzler K, Lorenz L, et al. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovasc Disord. 2018;18:92.CrossRef
38.
go back to reference Anadol R, Dimitriadis Z, Polimeni A, et al. Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non STelevation-acute coronary syndrome: a three-years follow-up1. Clin Hemorheol Microcirc. 2018;69:3–8.CrossRef Anadol R, Dimitriadis Z, Polimeni A, et al. Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non STelevation-acute coronary syndrome: a three-years follow-up1. Clin Hemorheol Microcirc. 2018;69:3–8.CrossRef
39.
go back to reference Gori T, Weissner M, Gönner S, et al. Characteristics, predictors, and mechanisms of thrombosis in coronary Bioresorbable scaffolds: differences between early and late events. JACC Cardiovasc Interv. 2017;10:2363–71.CrossRef Gori T, Weissner M, Gönner S, et al. Characteristics, predictors, and mechanisms of thrombosis in coronary Bioresorbable scaffolds: differences between early and late events. JACC Cardiovasc Interv. 2017;10:2363–71.CrossRef
40.
go back to reference Biscaglia S, Ugo F, Ielasi A, Secco GG, Durante A, D'Ascenzo F, et al. Bioresorbable scaffold vs. second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol. 2016;208:40–5.CrossRef Biscaglia S, Ugo F, Ielasi A, Secco GG, Durante A, D'Ascenzo F, et al. Bioresorbable scaffold vs. second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol. 2016;208:40–5.CrossRef
Metadata
Title
Bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: a meta-analysis
Authors
Alberto Polimeni
Remzi Anadol
Thomas Münzel
Martin Geyer
Salvatore De Rosa
Ciro Indolfi
Tommaso Gori
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Thrombosis
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1042-2

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue