Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2018

Open Access 01-12-2018 | Research article

Risk factors for prehypertension and their interactive effect: a cross- sectional survey in China

Authors: Jian Song, Xue Chen, Yingying Zhao, Jing Mi, Xuesen Wu, Huaiquan Gao

Published in: BMC Cardiovascular Disorders | Issue 1/2018

Login to get access

Abstract

Background

Individuals with prehypertension are at higher risk of developing hypertension and cardiovascular diseases, while the interaction between factors may aggravate prehypertension risk. Therefore, this study aimed to evaluate the risk factors for prehypertension in Chinese middle-aged and elderly adults, and explore the potentially interactive effect of evaluated factors.

Methods

All the participants that came from a community based cross-sectional survey were investigated in Bengbu, China, by being interviewed with a questionnaire. Body mass index (BMI), Waist circumference (WC) and lipid accumulation product (LAP) that reflect participants’ obesity were also calculated. In addition, logistic regression model was applied to explore the risk factors of prehypertension, followed by the assessment of the interactive effects between risk factors on prehypertension by the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index (SI).

Results

A total of 1777 participants were enrolled in this study, among which the prevalence of normtension, prehypertension and hypertension were 41.70%, 33.93% and 24.37% respectively. According to the multivariate logistic regression analysis, age (OR: 1.01, 95%CI: 1.00–1.02), smoking (OR: 1.67, 95%CI: 1.22–2.29), family history of cardiovascular diseases (OR: 1.52, 95%CI: 1.14–2.02), general obesity (OR: 1.51, 95%CI: 1.15–1.97) and LAP (OR: 2.58, 95%CI: 1.76–3.80) were all defined as the major factors that significantly related with the risk of prehypertension. When identifying prehypertension risk, the receiver-operating characteristics (ROC) curves (AUC) analysis indicated that LAP performed better than BMI in males (Z = 2.05, P = 0.03) and females (Z = 2.12, P = 0.03), but was superior to WC only in females (Z = 2.43, P = 0.01). What is more, there were significant interactive effects of LAP with family history of cardiovascular diseases (RERI: 1.88, 95%CI: 0.25–3.51; AP: 0.44, 95%CI: 0.20–0.69; SI: 2.37, 95%CI: 1.22–4.60) and smoking (RERI: 1.99, 95%CI: 0.04–3.93; AP: 0.42, 95%CI: 0.17–0.67; SI: 2.16, 95%CI: 1.68–4.00) on prehypertension risk. The value of AP (0.40, 95%CI: 0.03–0.77) also indicated a significant interaction between family history of cardiovascular diseases and smoking on prehypertension.

Conclusion

Prehypertension is currently prevalent in Chinese adults. This study indicated that age, family history of cardiovascular diseases, smoking, general obesity and LAP were significantly related with prehypertension risk. Furthermore, interactive effects on risk of prehypertension had been demonstrated in this study as well, which would help researchers to build strategy against prehypertension more comprehensively and scientifically.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lackland DT, Beilin LJ, Campbell NRC, Jaffe MG, Orias M, Ram CV, et al. Global implications of blood pressure thresholds and targets: guideline conversations from the world hypertension league. Hypertension. 2018;71(6):985–7.CrossRef Lackland DT, Beilin LJ, Campbell NRC, Jaffe MG, Orias M, Ram CV, et al. Global implications of blood pressure thresholds and targets: guideline conversations from the world hypertension league. Hypertension. 2018;71(6):985–7.CrossRef
2.
go back to reference Vaduganathan M, Pareek M, Qamar A, Pandey A, Olsen MH, Bhatt DL. Baseline Blood Pressure, the 2017 ACC/AHA High Blood Pressure Guidelines, and Long- Term Cardiovascular Risk in SPRINT. Am J Med. 2018. Vaduganathan M, Pareek M, Qamar A, Pandey A, Olsen MH, Bhatt DL. Baseline Blood Pressure, the 2017 ACC/AHA High Blood Pressure Guidelines, and Long- Term Cardiovascular Risk in SPRINT. Am J Med. 2018.
3.
go back to reference Evans PL, Prior JA, Belcher J, Mallen CD, Hay CA, Roddy E. Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res Ther. 2018;20(1):136.CrossRef Evans PL, Prior JA, Belcher J, Mallen CD, Hay CA, Roddy E. Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res Ther. 2018;20(1):136.CrossRef
4.
go back to reference Hou L, Li Q, Jiang L, Qiu H, Geng C, Hong JS, et al. Hypertension and diagnosis of Parkinson's disease: a meta-analysis of cohort studies. Front Neurol. 2018;9:162.CrossRef Hou L, Li Q, Jiang L, Qiu H, Geng C, Hong JS, et al. Hypertension and diagnosis of Parkinson's disease: a meta-analysis of cohort studies. Front Neurol. 2018;9:162.CrossRef
5.
go back to reference Ballocca F, D’Ascenzo F, Moretti C, Omede P, Cerrato E, Barbero U, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(11):1435–41.CrossRef Ballocca F, D’Ascenzo F, Moretti C, Omede P, Cerrato E, Barbero U, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(11):1435–41.CrossRef
6.
go back to reference Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRef Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRef
7.
go back to reference Fuchs FD, De Mello RB, Fuchs SC. Preventing the progression of prehypertension to hypertension: role of antihypertensives. Curr Hypertens Rep, 2015,17(1):505. Fuchs FD, De Mello RB, Fuchs SC. Preventing the progression of prehypertension to hypertension: role of antihypertensives. Curr Hypertens Rep, 2015,17(1):505.
8.
go back to reference Tseng CD, Yen AM, Chiu SY, et al. A predictive model for risk of prehypertension and hypertension and expected benefit after population-based life-style modification (KCIS no. 24). Am J Hypertens. 2012;25(2):171–9.CrossRef Tseng CD, Yen AM, Chiu SY, et al. A predictive model for risk of prehypertension and hypertension and expected benefit after population-based life-style modification (KCIS no. 24). Am J Hypertens. 2012;25(2):171–9.CrossRef
9.
go back to reference Xu T, Liu J, Zhu G, Liu J, Han S. Prevalence of prehypertension and associated risk factors among Chinese adults from a large-scale multi-ethnic population survey. BMC Public Health. 2016;16(1):775.CrossRef Xu T, Liu J, Zhu G, Liu J, Han S. Prevalence of prehypertension and associated risk factors among Chinese adults from a large-scale multi-ethnic population survey. BMC Public Health. 2016;16(1):775.CrossRef
10.
go back to reference Li G, Guo G, Wang W, Wang K, Wang H, Dong F, et al. Association of prehypertension and cardiovascular risk factor clustering in Inner Mongolia: a cross-sectional study. BMJ Open. 2017;7(6):e015340.CrossRef Li G, Guo G, Wang W, Wang K, Wang H, Dong F, et al. Association of prehypertension and cardiovascular risk factor clustering in Inner Mongolia: a cross-sectional study. BMJ Open. 2017;7(6):e015340.CrossRef
11.
go back to reference Xue H, Wang J, Hou J, Li J, Gao J, Chen S, et al. Prehypertension and chronic kidney disease in Chinese population: four-year follow-up study. PLoS One. 2015;10(12):e0144438.CrossRef Xue H, Wang J, Hou J, Li J, Gao J, Chen S, et al. Prehypertension and chronic kidney disease in Chinese population: four-year follow-up study. PLoS One. 2015;10(12):e0144438.CrossRef
12.
go back to reference Huang Y, Cai X, Liu C, Zhu D, Hua J, Hu Y, et al. Prehypertension and the risk of coronary heart disease in Asian and Western populations: a meta-analysis. J Am Heart Assoc. 2015;4:2.CrossRef Huang Y, Cai X, Liu C, Zhu D, Hua J, Hu Y, et al. Prehypertension and the risk of coronary heart disease in Asian and Western populations: a meta-analysis. J Am Heart Assoc. 2015;4:2.CrossRef
13.
go back to reference Barbero U, D'Ascenzo F, Nijhoff F, Moretti C, Biondi-Zoccai G, Mennuni M, Capodanno D, et al. Assessing Risk in Patients with Stable Coronary Disease: When Should We Intensify Care and Follow-Up? Results from a Meta-Analysis of Observational Studies of the COURAGE and FAME Era. Scientifica (Cairo). 2016;2016:3769152. Barbero U, D'Ascenzo F, Nijhoff F, Moretti C, Biondi-Zoccai G, Mennuni M, Capodanno D, et al. Assessing Risk in Patients with Stable Coronary Disease: When Should We Intensify Care and Follow-Up? Results from a Meta-Analysis of Observational Studies of the COURAGE and FAME Era. Scientifica (Cairo). 2016;2016:3769152.
14.
go back to reference Huang Y, Cai X, Li Y, Su L, Mai W, Wang S, et al. Prehypertension and the risk of stroke: a meta-analysis. Neurology. 2014;82(13):1153–61.CrossRef Huang Y, Cai X, Li Y, Su L, Mai W, Wang S, et al. Prehypertension and the risk of stroke: a meta-analysis. Neurology. 2014;82(13):1153–61.CrossRef
15.
go back to reference Egan BM, Stevens-Fabry S. Prehypertension–prevalence, health risks, and management strategies. Nat Rev Cardiol. 2015;12(5):289–300.CrossRef Egan BM, Stevens-Fabry S. Prehypertension–prevalence, health risks, and management strategies. Nat Rev Cardiol. 2015;12(5):289–300.CrossRef
16.
go back to reference Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on blood pressure in children and adolescents. Expert Rev Cardiovasc Ther. 2011;9(6):753–61.CrossRef Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on blood pressure in children and adolescents. Expert Rev Cardiovasc Ther. 2011;9(6):753–61.CrossRef
17.
go back to reference Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.CrossRef Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.CrossRef
18.
go back to reference Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;5:26.CrossRef Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;5:26.CrossRef
19.
go back to reference Cartolano FC, Pappiani C, Freitas MCP, Figueiredo Neto AM, Carioca AAF, Damasceno NRT. Is lipid accumulation product associated with an Atherogenic lipoprotein profile in Brazilian subjects? Arq Bras Cardiol. 2018;110(4):339–47.PubMedPubMedCentral Cartolano FC, Pappiani C, Freitas MCP, Figueiredo Neto AM, Carioca AAF, Damasceno NRT. Is lipid accumulation product associated with an Atherogenic lipoprotein profile in Brazilian subjects? Arq Bras Cardiol. 2018;110(4):339–47.PubMedPubMedCentral
20.
21.
go back to reference Mazidi M, Kengne AP, Katsiki N, Mikhailidis DP, Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complicat. 2018;32(3):266–70.CrossRef Mazidi M, Kengne AP, Katsiki N, Mikhailidis DP, Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complicat. 2018;32(3):266–70.CrossRef
22.
go back to reference Ray L, Ravichandran K, Nanda SK. Comparison of lipid accumulation product index with body mass index and waist circumference as a predictor of metabolic syndrome in Indian population. Metab Syndr Relat Disord. 2018;16(5):240–5.CrossRef Ray L, Ravichandran K, Nanda SK. Comparison of lipid accumulation product index with body mass index and waist circumference as a predictor of metabolic syndrome in Indian population. Metab Syndr Relat Disord. 2018;16(5):240–5.CrossRef
23.
go back to reference Luo W, Guo Z, Wu M, Hao C, Zhou Z, Yao X. Interaction of smoking and obesity on type 2 diabetes risk in a Chinese cohort. Physiol Behav. 2015;139:240–3.CrossRef Luo W, Guo Z, Wu M, Hao C, Zhou Z, Yao X. Interaction of smoking and obesity on type 2 diabetes risk in a Chinese cohort. Physiol Behav. 2015;139:240–3.CrossRef
24.
go back to reference Barbero U, Destefanis P. An Indian-look right into restrictive cardiomyopathies. Indian Heart J. 2015;67(6):512–3.CrossRef Barbero U, Destefanis P. An Indian-look right into restrictive cardiomyopathies. Indian Heart J. 2015;67(6):512–3.CrossRef
25.
go back to reference Writing Group of 2010 Chinese guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension. Chine J Cardiol. 2011;39:579–616 (In Chinese). Writing Group of 2010 Chinese guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension. Chine J Cardiol. 2011;39:579–616 (In Chinese).
26.
go back to reference Chen C, Lu FC, Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed EnvironSci. 2004, 17 Suppl: 1–36. Chen C, Lu FC, Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed EnvironSci. 2004, 17 Suppl: 1–36.
27.
go back to reference Chu JR, Gao JL, Zhao SP, et al. Blood lipid abnormity prevention guidance in Chinese adult. Chin Circ J. 2016;31(10):937–53. Chu JR, Gao JL, Zhao SP, et al. Blood lipid abnormity prevention guidance in Chinese adult. Chin Circ J. 2016;31(10):937–53.
28.
go back to reference Andersson T, Alfredsson L, Kallberg H, et al. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:575–9.CrossRef Andersson T, Alfredsson L, Kallberg H, et al. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:575–9.CrossRef
29.
go back to reference Knol MJ, Vander Weele TJ, Groenwold RH, et al. Estimating measures of interaction on an additive scale for preventive exposures. Eur J Epidemiol. 2011;26(6):433–8.CrossRef Knol MJ, Vander Weele TJ, Groenwold RH, et al. Estimating measures of interaction on an additive scale for preventive exposures. Eur J Epidemiol. 2011;26(6):433–8.CrossRef
30.
go back to reference Tsai PS, Ke TL, Huang CJ, Tsai JC, Chen PL, Wang SY, et al. Prevalence and determinants of prehypertension status in the Taiwanese general population. J Hypertens. 2005;23:1355–60.CrossRef Tsai PS, Ke TL, Huang CJ, Tsai JC, Chen PL, Wang SY, et al. Prevalence and determinants of prehypertension status in the Taiwanese general population. J Hypertens. 2005;23:1355–60.CrossRef
31.
go back to reference Hu L, Huang X, You C, Li J, Hong K, Li P, et al. Prevalence and Risk Factors of Prehypertension and Hypertension in Southern China. PLoS One. 2017;12(1):e 0170238.CrossRef Hu L, Huang X, You C, Li J, Hong K, Li P, et al. Prevalence and Risk Factors of Prehypertension and Hypertension in Southern China. PLoS One. 2017;12(1):e 0170238.CrossRef
32.
go back to reference Yang L, Yan J, Tang X, Xu X, Yu W, Wu H. Prevalence, awareness, treatment, control and risk factors associated with hypertension among adults in southern China, 2013. PLoS One. 2016;11:e146181. Yang L, Yan J, Tang X, Xu X, Yu W, Wu H. Prevalence, awareness, treatment, control and risk factors associated with hypertension among adults in southern China, 2013. PLoS One. 2016;11:e146181.
33.
go back to reference Ma M, Tan X, Zhu S. Prehypertension and its optimal indicator among adults in Hubei Province, Central China, 2013-2015. Clin Exp Hypertens. 2017;39(6):532–8.CrossRef Ma M, Tan X, Zhu S. Prehypertension and its optimal indicator among adults in Hubei Province, Central China, 2013-2015. Clin Exp Hypertens. 2017;39(6):532–8.CrossRef
34.
go back to reference Shen Y, Chang C, Zhang J, Jiang Y, Ni B, Wang Y. Prevalence and risk factors associated with hypertension and prehypertension in a working population at high altitude in China: a cross-sectional study. Environ Health Prev Med. 2017;22(1):19.CrossRef Shen Y, Chang C, Zhang J, Jiang Y, Ni B, Wang Y. Prevalence and risk factors associated with hypertension and prehypertension in a working population at high altitude in China: a cross-sectional study. Environ Health Prev Med. 2017;22(1):19.CrossRef
35.
go back to reference Do HT, Geleijnse JM, Le MB, Kok FJ, Feskens EJ. National prevalence and associated risk factors of hypertension and prehypertension among Vietnamese adults. Am J Hypertens. 2015;28(1):89–97.CrossRef Do HT, Geleijnse JM, Le MB, Kok FJ, Feskens EJ. National prevalence and associated risk factors of hypertension and prehypertension among Vietnamese adults. Am J Hypertens. 2015;28(1):89–97.CrossRef
36.
go back to reference Tabrizi JS, Sadeghi-Bazargani H, Farahbakhsh M, Nikniaz L, Nikniaz Z. Prevalence and Associated Factors of Prehypertension and Hypertension in Iranian Population: The Lifestyle Promotion Project (LPP). PLoS One. 2016;11(10):e01652 64.CrossRef Tabrizi JS, Sadeghi-Bazargani H, Farahbakhsh M, Nikniaz L, Nikniaz Z. Prevalence and Associated Factors of Prehypertension and Hypertension in Iranian Population: The Lifestyle Promotion Project (LPP). PLoS One. 2016;11(10):e01652 64.CrossRef
37.
go back to reference Lee W, Yoon JH, Roh J, Lee S, Seok H, Lee JH, et al. The association between low blood lead levels and the prevalence of prehypertension among nonhypertensive adults in Korea. Am J Hum Biol. 2016;28(5):729–35.CrossRef Lee W, Yoon JH, Roh J, Lee S, Seok H, Lee JH, et al. The association between low blood lead levels and the prevalence of prehypertension among nonhypertensive adults in Korea. Am J Hum Biol. 2016;28(5):729–35.CrossRef
38.
go back to reference Glasser SP, Judd S, Basile J, Lackland D, Halanych J, Cushman M, et al. Prehypertension, racial prevalence and its association with risk factors: analysis of the REasons for geographic and racial differences in stroke (REGARDS) study. Am J Hypertens. 2011;24(2):194–9.CrossRef Glasser SP, Judd S, Basile J, Lackland D, Halanych J, Cushman M, et al. Prehypertension, racial prevalence and its association with risk factors: analysis of the REasons for geographic and racial differences in stroke (REGARDS) study. Am J Hypertens. 2011;24(2):194–9.CrossRef
39.
go back to reference Hong H, Wang H, Liao H. Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of southern China. BMC Cardiovasc Disord. 2013;13:20.CrossRef Hong H, Wang H, Liao H. Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of southern China. BMC Cardiovasc Disord. 2013;13:20.CrossRef
40.
go back to reference Lorenzo C, Aung K, Stern MP, Haffner SM. Pulse pressure, prehypertension, and mortality: the San Antonio heart study. Am J Hypertens. 2009;22(11):1219–26.CrossRef Lorenzo C, Aung K, Stern MP, Haffner SM. Pulse pressure, prehypertension, and mortality: the San Antonio heart study. Am J Hypertens. 2009;22(11):1219–26.CrossRef
41.
go back to reference Liu B, Dong X, Xiao Y, et al. Variability of metabolic risk factors associated with prehypertension in males and females: a cross-sectional study in China. Arch Med Sci. 2018;14(4):766–72.CrossRef Liu B, Dong X, Xiao Y, et al. Variability of metabolic risk factors associated with prehypertension in males and females: a cross-sectional study in China. Arch Med Sci. 2018;14(4):766–72.CrossRef
42.
go back to reference Wu J, Xu H, He X, et al. Six-year changes in the prevalence of obesity and obesity- related diseases in northeastern China from 2007 to 2013. Sci Rep. 2017;7:41518.CrossRef Wu J, Xu H, He X, et al. Six-year changes in the prevalence of obesity and obesity- related diseases in northeastern China from 2007 to 2013. Sci Rep. 2017;7:41518.CrossRef
43.
go back to reference Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of gluco-and mineralocorticoid hormones in the setting of cardiometabolic alterations. Ann N Y Acad Sci. 2012;1264:87–102.CrossRef Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of gluco-and mineralocorticoid hormones in the setting of cardiometabolic alterations. Ann N Y Acad Sci. 2012;1264:87–102.CrossRef
44.
go back to reference Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29(4):415–23.CrossRef Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29(4):415–23.CrossRef
45.
go back to reference Lovren F, Teoh H, Verma S. Obesity and atherosclerosis:mechanistic insights. Can J Cardiol. 2015;31(2):177–83.CrossRef Lovren F, Teoh H, Verma S. Obesity and atherosclerosis:mechanistic insights. Can J Cardiol. 2015;31(2):177–83.CrossRef
46.
go back to reference Horwich TB, Fonarow GC, Clark AL. Obesity and the Obesity Paradox in Heart Failure. Prog Cardiovasc Dis. 2018. Horwich TB, Fonarow GC, Clark AL. Obesity and the Obesity Paradox in Heart Failure. Prog Cardiovasc Dis. 2018.
47.
go back to reference Cespedes Feliciano EM, Kroenke CH, Caan BJ. The obesity paradox in Cancer: how important is muscle? Annu rev Nutr. 2018;38:357–79.CrossRef Cespedes Feliciano EM, Kroenke CH, Caan BJ. The obesity paradox in Cancer: how important is muscle? Annu rev Nutr. 2018;38:357–79.CrossRef
48.
go back to reference Lin TY, Lim PS, Hung SC. Impact of misclassification of obesity by body mass index on mortality in patients with CKD. Kidney Int Rep. 2017;3(2):447–55.CrossRef Lin TY, Lim PS, Hung SC. Impact of misclassification of obesity by body mass index on mortality in patients with CKD. Kidney Int Rep. 2017;3(2):447–55.CrossRef
49.
go back to reference Sam S. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk. Horm Mol Biol Clin Investig. 2018;33:1. Sam S. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk. Horm Mol Biol Clin Investig. 2018;33:1.
50.
go back to reference Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132(17):1639–47.CrossRef Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132(17):1639–47.CrossRef
51.
go back to reference Tang L, Zhang F, Tong N. The association of visceral adipose tissue and subcutaneous adipose tissue with metabolic risk factors in a large population of Chinese adults. Clin Endocrinol. 2016;85(1):46–53.CrossRef Tang L, Zhang F, Tong N. The association of visceral adipose tissue and subcutaneous adipose tissue with metabolic risk factors in a large population of Chinese adults. Clin Endocrinol. 2016;85(1):46–53.CrossRef
52.
go back to reference Hwang YC, Fujimoto WY, Kahn SE, Leonetti DL, Boyko EJ. Greater visceral abdominal fat is associated with a lower probability of conversion of prehypertension to normotension. J Hypertens. 2017;35(6):1213–8.CrossRef Hwang YC, Fujimoto WY, Kahn SE, Leonetti DL, Boyko EJ. Greater visceral abdominal fat is associated with a lower probability of conversion of prehypertension to normotension. J Hypertens. 2017;35(6):1213–8.CrossRef
53.
go back to reference Viljanen AP, Lautamaki R, Jarvisalo M, et al. Effects of weight loss on visceral and abdominal subcutaneous adipose tissue blood flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med. 2009;41:152–60.CrossRef Viljanen AP, Lautamaki R, Jarvisalo M, et al. Effects of weight loss on visceral and abdominal subcutaneous adipose tissue blood flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med. 2009;41:152–60.CrossRef
54.
go back to reference Bouchi R, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.48.CrossRef Bouchi R, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.48.CrossRef
55.
go back to reference Sato F, Maeda N, Yamada T, Namazui H, Fukuda S, Natsukawa T, et al. Association of Epicardial, visceral, and subcutaneous fat with Cardiometabolic diseases. Circ J. 2018;82(2):502–8.CrossRef Sato F, Maeda N, Yamada T, Namazui H, Fukuda S, Natsukawa T, et al. Association of Epicardial, visceral, and subcutaneous fat with Cardiometabolic diseases. Circ J. 2018;82(2):502–8.CrossRef
56.
go back to reference Madero M, Katz R, Murphy R, Newman A, Patel K, Ix J, et al. Comparison between different measures of body fat with kidney function decline and incident CKD. Clin J Am Soc Nephrol. 2017;12(6):893–903.CrossRef Madero M, Katz R, Murphy R, Newman A, Patel K, Ix J, et al. Comparison between different measures of body fat with kidney function decline and incident CKD. Clin J Am Soc Nephrol. 2017;12(6):893–903.CrossRef
57.
go back to reference Wolfgram PM, Connor EL, Rehm JL, et al. In nonobese girls, waist circumference as a predictor of insulin resistance is comparable to MRI fat measures and superior to BMI. Horm Res Paediatr. 2015;84(4):258–65.CrossRef Wolfgram PM, Connor EL, Rehm JL, et al. In nonobese girls, waist circumference as a predictor of insulin resistance is comparable to MRI fat measures and superior to BMI. Horm Res Paediatr. 2015;84(4):258–65.CrossRef
58.
go back to reference Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central obesity with hypertension. Clin Nutr. 2017. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central obesity with hypertension. Clin Nutr. 2017.
59.
go back to reference Owolabi EO, Ter Goon D, Adeniyi OV, Ajayi AI. Optimal waist circumference cut-off points for predicting metabolic syndrome among low-income black south African adults. BMC Res Notes 2018, 11(1):22. Owolabi EO, Ter Goon D, Adeniyi OV, Ajayi AI. Optimal waist circumference cut-off points for predicting metabolic syndrome among low-income black south African adults. BMC Res Notes 2018, 11(1):22.
60.
go back to reference Roriz AK, Passos LC, de Oliveira CC, Eickemberg M, Moreira Pde A, Sampaio LR. Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. PLoS One 2014, 9(7):e103499.CrossRef Roriz AK, Passos LC, de Oliveira CC, Eickemberg M, Moreira Pde A, Sampaio LR. Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. PLoS One 2014, 9(7):e103499.CrossRef
61.
go back to reference Kahn HS, Cheng YJ. Longitudinal changes in BMI and in an index estimating excess lipids among white and black adults in the United States. Int J Obes. 2008;32:136–43.CrossRef Kahn HS, Cheng YJ. Longitudinal changes in BMI and in an index estimating excess lipids among white and black adults in the United States. Int J Obes. 2008;32:136–43.CrossRef
62.
go back to reference Bredella MA. Sex differences in body composition. Adv Exp Med Biol. 2017;1043:9–27.CrossRef Bredella MA. Sex differences in body composition. Adv Exp Med Biol. 2017;1043:9–27.CrossRef
63.
go back to reference Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.CrossRef Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.CrossRef
64.
go back to reference Elffers TW, de Mutsert R, Lamb HJ, de Roos A, Willems van Dijk K, Rosendaal FR, et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS One. 2017;12(9):e0185403.CrossRef Elffers TW, de Mutsert R, Lamb HJ, de Roos A, Willems van Dijk K, Rosendaal FR, et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS One. 2017;12(9):e0185403.CrossRef
65.
go back to reference de Mutsert R, Gast K, Widya R, de Koning E, Jazet I, Lamb H, et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study. Metab Syndr Relat Disord. 2018;16(1):54–63.CrossRef de Mutsert R, Gast K, Widya R, de Koning E, Jazet I, Lamb H, et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study. Metab Syndr Relat Disord. 2018;16(1):54–63.CrossRef
66.
go back to reference Wakabayashi I. Influence of age and gender on lipid accumulation product and its relation to diabetes mellitus in Japanese. Clin Chim Acta. 2014;431:221–6.CrossRef Wakabayashi I. Influence of age and gender on lipid accumulation product and its relation to diabetes mellitus in Japanese. Clin Chim Acta. 2014;431:221–6.CrossRef
67.
go back to reference Li R, Li Q, Cui M, Ying Z, Li L, Zhong T, et al. Visceral adiposity index, lipid accumulation product and intracranial atherosclerotic stenosis in middle-aged and elderly Chinese. Sci Rep. 2017;7(1):7951.CrossRef Li R, Li Q, Cui M, Ying Z, Li L, Zhong T, et al. Visceral adiposity index, lipid accumulation product and intracranial atherosclerotic stenosis in middle-aged and elderly Chinese. Sci Rep. 2017;7(1):7951.CrossRef
68.
go back to reference Dai D, Chang Y, Chen Y, Chen S, Yu S, Guo X, et al. Visceral Adiposity Index and Lipid Accumulation Product Index: Two Alternate Body Indices to Identify Chronic Kidney Disease among the Rural Population in Northeast China. Int J Environ Res Public Health. 2016;13:12. Dai D, Chang Y, Chen Y, Chen S, Yu S, Guo X, et al. Visceral Adiposity Index and Lipid Accumulation Product Index: Two Alternate Body Indices to Identify Chronic Kidney Disease among the Rural Population in Northeast China. Int J Environ Res Public Health. 2016;13:12.
69.
go back to reference Dai H, Wang W, Chen R, Chen Z, Lu Y, Yuan H. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond). 2017;14:49.CrossRef Dai H, Wang W, Chen R, Chen Z, Lu Y, Yuan H. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond). 2017;14:49.CrossRef
70.
go back to reference Bozorgmanesh M, Hadaegh F, Azizi F. Diabetes prediction, lipid accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study. Lipids Health Dis. 2010;9:45.CrossRef Bozorgmanesh M, Hadaegh F, Azizi F. Diabetes prediction, lipid accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study. Lipids Health Dis. 2010;9:45.CrossRef
71.
go back to reference Han TS, McNeill G, Seidell JC, Lean ME. Predicting intra-abdominal fatness from anthropometric measures: the influence of stature. Int J Obes Relat Metab Disord. 1997;21:587–93.CrossRef Han TS, McNeill G, Seidell JC, Lean ME. Predicting intra-abdominal fatness from anthropometric measures: the influence of stature. Int J Obes Relat Metab Disord. 1997;21:587–93.CrossRef
72.
go back to reference Simoes GM, Campagnaro BP, Tonini CL, Meyrelles SS, Kuniyoshi FH, Vasquez EC. Hemodynamic reactivity to laboratory stressors in healthy subjects: influence of gender and family history of cardiovascular diseases. Int J Med Sci. 2013;10(7):848–56.CrossRef Simoes GM, Campagnaro BP, Tonini CL, Meyrelles SS, Kuniyoshi FH, Vasquez EC. Hemodynamic reactivity to laboratory stressors in healthy subjects: influence of gender and family history of cardiovascular diseases. Int J Med Sci. 2013;10(7):848–56.CrossRef
73.
go back to reference Talukder MAH, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol. 2011;300(1):388–96.CrossRef Talukder MAH, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol. 2011;300(1):388–96.CrossRef
74.
go back to reference Leng J, Wang P, Shao P, Zhang C, Li W, Li N, et al. Passive smoking increased risk of gestational diabetes mellitus independently and synergistically with prepregnancy obesity in Tianjin, China. Diabetes Metab Res Rev. 2017;33:3.CrossRef Leng J, Wang P, Shao P, Zhang C, Li W, Li N, et al. Passive smoking increased risk of gestational diabetes mellitus independently and synergistically with prepregnancy obesity in Tianjin, China. Diabetes Metab Res Rev. 2017;33:3.CrossRef
75.
go back to reference Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the international study of prediction of intra abdominal adiposity and its relationship with Cardiometabolic risk/IntraAbdominal adiposity. Am J Clin Nutr. 2012;96:714–26.CrossRef Nazare JA, Smith JD, Borel AL, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the international study of prediction of intra abdominal adiposity and its relationship with Cardiometabolic risk/IntraAbdominal adiposity. Am J Clin Nutr. 2012;96:714–26.CrossRef
Metadata
Title
Risk factors for prehypertension and their interactive effect: a cross- sectional survey in China
Authors
Jian Song
Xue Chen
Yingying Zhao
Jing Mi
Xuesen Wu
Huaiquan Gao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2018
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0917-y

Other articles of this Issue 1/2018

BMC Cardiovascular Disorders 1/2018 Go to the issue