Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2018

Open Access 01-12-2018 | Case report

The CardioMEMS system in the clinical management of end-stage heart failure patients: three case reports

Authors: Carsten Tschöpe, Alessio Alogna, Frank Spillmann, Alessandro Faragli, Gunther Schmidt, Florian Blaschke, Uwe Kühl, Ewa Hertel, Monika Willner, Daniel Morris, Heiner Post, Michel Noutsias, Burkert Pieske, Florian Krackhardt

Published in: BMC Cardiovascular Disorders | Issue 1/2018

Login to get access

Abstract

Background

Recent clinical trials have shown that pulmonary artery pressure-guided therapy via the CardioMEMS™ system reduces the risk of recurrent hospitalizations in chronic heart failure (HF) patients. The CardioMEMS™ pressure sensor is percutaneously implanted in a branch of the pulmonary artery and allows telemetric pressure monitoring via a receiver. According to the most recent ESC guidelines, this technology has currently a class IIb indication in patients with class III New York Heart Association symptoms and a previous hospitalization for congestive heart failure within the last year, regardless of ejection fraction. Aim of this guided-therapy is multifold, including an early prediction of upcoming decompensation, optimization of patients’ therapy and thereby avoidance of hospital admissions. In addition, it can be used during acute decompensation events as a novel tool to direct intra-hospital therapeutic interventions such as inotropes infusion or left ventricular (LV) assist device monitoring, with the aim of achieving an optimal volume status.

Case presentation

We present a case series of three end-stage HF patients with reduced ejection fraction (HFrEF) who received a CardioMEMS™ device as an aid in their clinical management. The CardioMEMS™ system enabled a closer non-invasive hemodynamic monitoring of these patients and guided the extent of therapeutic interventions. Patients were free from device- or system-related complications. In addition, no pressure-sensor failure was observed. Two patients received a 24-h infusion of the calcium sensitizer levosimendan. One patient showed a refractory acute decompensation and underwent LV assist device (LVAD) implantation as a bridge to cardiac transplantation. Switching a patient with recurrent hospitalizations to the Angiotensin Receptor Neprilysin Inhibitor (ARNI, Sacubitril-Valsartan) on top of the optimal heart failure-therapy improved its subjective condition and hemodynamics, avoiding further hospitalization.

Conclusions

Our case series underlines the potential impact of CardioMEMS™ derived data in the daily clinical management of end-stage HF patients. The new concept to combine CardioMEMS™ in the setting of an outpatient levosimendan program as well as a bridge to LVAD-implantation/heart transplantation looks promising but needs further investigations.
Literature
1.
go back to reference Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.CrossRefPubMed Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.CrossRefPubMed
2.
go back to reference Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.CrossRefPubMed Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.CrossRefPubMed
3.
go back to reference Tschope C, Pieske B. “One Size Does Not Fit All”: How to Individualize Decongestive Therapy Strategies in Heart Failure. JACC Heart failure. 2016;4(6):460–3.CrossRefPubMed Tschope C, Pieske B. “One Size Does Not Fit All”: How to Individualize Decongestive Therapy Strategies in Heart Failure. JACC Heart failure. 2016;4(6):460–3.CrossRefPubMed
4.
go back to reference Mejhert M, Lindgren P, Schill O, Edner M, Persson H, Kahan T. Long term health care consumption and cost expenditure in systolic heart failure. Eur J Intern Med. 2013;24(3):260–5.CrossRefPubMed Mejhert M, Lindgren P, Schill O, Edner M, Persson H, Kahan T. Long term health care consumption and cost expenditure in systolic heart failure. Eur J Intern Med. 2013;24(3):260–5.CrossRefPubMed
5.
go back to reference Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.CrossRefPubMedPubMedCentral Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.CrossRefPubMedPubMedCentral
6.
go back to reference Solomon SD, Dobson J, Pocock S, et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation. 2007;116(13):1482–7.CrossRefPubMed Solomon SD, Dobson J, Pocock S, et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation. 2007;116(13):1482–7.CrossRefPubMed
8.
go back to reference Koehler F, Winkler S, Schieber M, et al. Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study. Circulation. 2011;123(17):1873–80.CrossRefPubMed Koehler F, Winkler S, Schieber M, et al. Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study. Circulation. 2011;123(17):1873–80.CrossRefPubMed
9.
go back to reference Ong MK, Romano PS, Edgington S, et al. Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition -- Heart Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern Med. 2016;176(3):310–8.CrossRefPubMedPubMedCentral Ong MK, Romano PS, Edgington S, et al. Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition -- Heart Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern Med. 2016;176(3):310–8.CrossRefPubMedPubMedCentral
10.
go back to reference Hindricks G, Taborsky M, Glikson M, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet. 2014;384(9943):583–90.CrossRefPubMed Hindricks G, Taborsky M, Glikson M, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet. 2014;384(9943):583–90.CrossRefPubMed
11.
go back to reference Angermann CE, Stork S, Gelbrich G, et al. Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the Interdisciplinary Network for Heart Failure (INH) study. Circ Heart Fail. 2012;5(1):25–35.CrossRefPubMed Angermann CE, Stork S, Gelbrich G, et al. Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the Interdisciplinary Network for Heart Failure (INH) study. Circ Heart Fail. 2012;5(1):25–35.CrossRefPubMed
12.
go back to reference Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med. 2008;168(3):316–24.CrossRefPubMed Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med. 2008;168(3):316–24.CrossRefPubMed
13.
go back to reference Bohm M, Drexler H, Oswald H, et al. Fluid status telemedicine alerts for heart failure: a randomized controlled trial. Eur Heart J. 2016;37(41):3154–63.CrossRefPubMed Bohm M, Drexler H, Oswald H, et al. Fluid status telemedicine alerts for heart failure: a randomized controlled trial. Eur Heart J. 2016;37(41):3154–63.CrossRefPubMed
14.
15.
go back to reference Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.CrossRefPubMed Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.CrossRefPubMed
16.
go back to reference Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154(2):260–6.CrossRefPubMed Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154(2):260–6.CrossRefPubMed
17.
go back to reference Klein L. (Re)Discovering the Neurohormonal and Hemodynamic Duality of Heart Failure. J Am Coll Cardiol. 2017;70(15):1887–9.CrossRefPubMed Klein L. (Re)Discovering the Neurohormonal and Hemodynamic Duality of Heart Failure. J Am Coll Cardiol. 2017;70(15):1887–9.CrossRefPubMed
18.
go back to reference Adamson PB. Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: new insights from continuous monitoring devices. Curr Heart Fail Rep. 2009;6(4):287–92.CrossRefPubMed Adamson PB. Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: new insights from continuous monitoring devices. Curr Heart Fail Rep. 2009;6(4):287–92.CrossRefPubMed
19.
go back to reference Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118(14):1433–41.CrossRefPubMed Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118(14):1433–41.CrossRefPubMed
20.
go back to reference Bourge RC, Abraham WT, Adamson PB, et al. Randomized Controlled Trial of an Implantable Continuous Hemodynamic Monitor in Patients With Advanced Heart Failure. The COMPASS-HF Study. 2008;51(11):1073–9. Bourge RC, Abraham WT, Adamson PB, et al. Randomized Controlled Trial of an Implantable Continuous Hemodynamic Monitor in Patients With Advanced Heart Failure. The COMPASS-HF Study. 2008;51(11):1073–9.
21.
go back to reference Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.CrossRefPubMed Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.CrossRefPubMed
22.
go back to reference Costanzo MR, Stevenson LW, Adamson PB, et al. Interventions Linked to Decreased Heart Failure Hospitalizations During Ambulatory Pulmonary Artery Pressure Monitoring. JACC Heart Fail. 2016;4(5):333–44.CrossRefPubMed Costanzo MR, Stevenson LW, Adamson PB, et al. Interventions Linked to Decreased Heart Failure Hospitalizations During Ambulatory Pulmonary Artery Pressure Monitoring. JACC Heart Fail. 2016;4(5):333–44.CrossRefPubMed
23.
go back to reference Adamson PB, Abraham WT, Stevenson LW, et al. Pulmonary Artery Pressure-Guided Heart Failure Management Reduces 30-Day Readmissions. Circ Heart Fail. 2016;9(6). Adamson PB, Abraham WT, Stevenson LW, et al. Pulmonary Artery Pressure-Guided Heart Failure Management Reduces 30-Day Readmissions. Circ Heart Fail. 2016;9(6).
24.
go back to reference Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61.CrossRefPubMed Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61.CrossRefPubMed
25.
go back to reference Givertz MM, Stevenson LW, Costanzo MR, et al. Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2017;70(15):1875–86.CrossRefPubMed Givertz MM, Stevenson LW, Costanzo MR, et al. Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2017;70(15):1875–86.CrossRefPubMed
26.
go back to reference Nieminen MS, Buerke M, Cohen-Solal A, et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: A review and expert consensus opinion. Int J Cardiol. 2016;218:150–7.CrossRefPubMed Nieminen MS, Buerke M, Cohen-Solal A, et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: A review and expert consensus opinion. Int J Cardiol. 2016;218:150–7.CrossRefPubMed
27.
go back to reference Silvetti S, Nieminen MS. Repeated or intermittent levosimendan treatment in advanced heart failure: An updated meta-analysis. Int J Cardiol. 2016;202:138–43.CrossRefPubMed Silvetti S, Nieminen MS. Repeated or intermittent levosimendan treatment in advanced heart failure: An updated meta-analysis. Int J Cardiol. 2016;202:138–43.CrossRefPubMed
28.
go back to reference Altenberger J, Gustafsson F, Harjola VP, et al. Levosimendan in acute and advanced heart failure: an appraisal of the clinical database and evaluation of its therapeutic applications. J Cardiovasc Pharmacol. 2018;71(3):129–136. Altenberger J, Gustafsson F, Harjola VP, et al. Levosimendan in acute and advanced heart failure: an appraisal of the clinical database and evaluation of its therapeutic applications. J Cardiovasc Pharmacol. 2018;71(3):129–136.
29.
go back to reference Mebazaa A, Nieminen MS, Filippatos GS, et al. Levosimendan vs. dobutamine: outcomes for acute heart failure patients on beta-blockers in SURVIVE. Eur J Heart Fail. 2009;11(3):304–11.CrossRefPubMedPubMedCentral Mebazaa A, Nieminen MS, Filippatos GS, et al. Levosimendan vs. dobutamine: outcomes for acute heart failure patients on beta-blockers in SURVIVE. Eur J Heart Fail. 2009;11(3):304–11.CrossRefPubMedPubMedCentral
30.
go back to reference Nieminen MS, Fruhwald S, Heunks LM, et al. Levosimendan: current data, clinical use and future development. Heart, lung and vessels. 2013;5(4):227–45.PubMedPubMedCentral Nieminen MS, Fruhwald S, Heunks LM, et al. Levosimendan: current data, clinical use and future development. Heart, lung and vessels. 2013;5(4):227–45.PubMedPubMedCentral
31.
go back to reference Landoni G, Mizzi A, Biondi-Zoccai G, et al. Levosimendan reduces mortality in critically ill patients. A meta-analysis of randomized controlled studies. Minerva Anestesiol. 2010;76(4):276–86.PubMed Landoni G, Mizzi A, Biondi-Zoccai G, et al. Levosimendan reduces mortality in critically ill patients. A meta-analysis of randomized controlled studies. Minerva Anestesiol. 2010;76(4):276–86.PubMed
32.
go back to reference Landoni G, Mizzi A, Biondi-Zoccai G, et al. Reducing mortality in cardiac surgery with levosimendan: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2010;24(1):51–7.CrossRefPubMed Landoni G, Mizzi A, Biondi-Zoccai G, et al. Reducing mortality in cardiac surgery with levosimendan: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2010;24(1):51–7.CrossRefPubMed
33.
go back to reference Ribeiro RA, Rohde LE, Polanczyk CA. Levosimendan in acute decompensated heart failure: systematic review and meta-analysis. Arq Bras Cardiol. 2010;95(2):230–7.CrossRefPubMed Ribeiro RA, Rohde LE, Polanczyk CA. Levosimendan in acute decompensated heart failure: systematic review and meta-analysis. Arq Bras Cardiol. 2010;95(2):230–7.CrossRefPubMed
34.
go back to reference Landoni G, Biondi-Zoccai G, Greco M, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40(2):634–46.CrossRefPubMed Landoni G, Biondi-Zoccai G, Greco M, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40(2):634–46.CrossRefPubMed
35.
go back to reference Koster G, Wetterslev J, Gluud C, Zijlstra JG, Scheeren TW, van der Horst IC, Keus F. Effects of levosimendan for low cardiac output syndrome in critically ill patients: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2014;41(2):203–21. Koster G, Wetterslev J, Gluud C, Zijlstra JG, Scheeren TW, van der Horst IC, Keus F. Effects of levosimendan for low cardiac output syndrome in critically ill patients: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2014;41(2):203–21.
36.
go back to reference Maharaj R, Metaxa V. Levosimendan and mortality after coronary revascularisation: a meta-analysis of randomised controlled trials. Crit Care. 2011;15(3):R140.CrossRefPubMedPubMedCentral Maharaj R, Metaxa V. Levosimendan and mortality after coronary revascularisation: a meta-analysis of randomised controlled trials. Crit Care. 2011;15(3):R140.CrossRefPubMedPubMedCentral
37.
go back to reference McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.CrossRefPubMed McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.CrossRefPubMed
38.
go back to reference McMurray JJ, Packer M, Desai AS, et al. Baseline characteristics and treatment of patients in prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2014;16(7):817–25.CrossRefPubMed McMurray JJ, Packer M, Desai AS, et al. Baseline characteristics and treatment of patients in prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2014;16(7):817–25.CrossRefPubMed
39.
go back to reference Angermann CE, Assmus B, Anker SD, et al. Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF). Clin Res Cardiol. 2018. https://doi.org/10.1007/s00392-018-1281-8 [Epub ahead of print]. Angermann CE, Assmus B, Anker SD, et al. Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF). Clin Res Cardiol. 2018. https://​doi.​org/​10.​1007/​s00392-018-1281-8 [Epub ahead of print].
Metadata
Title
The CardioMEMS system in the clinical management of end-stage heart failure patients: three case reports
Authors
Carsten Tschöpe
Alessio Alogna
Frank Spillmann
Alessandro Faragli
Gunther Schmidt
Florian Blaschke
Uwe Kühl
Ewa Hertel
Monika Willner
Daniel Morris
Heiner Post
Michel Noutsias
Burkert Pieske
Florian Krackhardt
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2018
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0883-4

Other articles of this Issue 1/2018

BMC Cardiovascular Disorders 1/2018 Go to the issue