Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2018

Open Access 01-12-2018 | Research article

Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease

Authors: Qiyu Lu, Yi Sun, Yuyin Duan, Bin Li, Jianming Xia, Songhua Yu, Guimin Zhang

Published in: BMC Cardiovascular Disorders | Issue 1/2018

Login to get access

Abstract

Background

Valvular heart disease is a leading cause of cardiovascular mortality, especially in China. More than a half of valvular heart diseases are caused by acute rheumatic fever. microRNA is involved in many physiological and pathological processes. However, the miRNA profile of the rheumatic valvular heart disease is unknown. This research is to discuss microRNAs and their target gene pathways involved in rheumatic heart valve disease.

Methods

Serum miRNA from one healthy individual and four rheumatic heart disease patients were sequenced. Specific differentially expressed miRNAs were quantified by Q-PCR in 40 patients, with 20 low-to-moderate rheumatic mitral valve stenosis patients and 20 severe mitral valve stenosis patients. The target relationship between certain miRNA and predicted target genes were analysis by Luciferase reporter assay. The IL-1β and IL1R1 expression levels were analyzed by immunohistochemistry and western blot in the mitral valve from surgery of mitral valve replacement.

Results

The results showed that 13 and 91 miRNAs were commonly upregulated or downregulated in all four patients. Nine miRNAs, 1 upregulated and 8 downregulated, that had a similar fold change in all 4 patients were selected for quantitative PCR verification. The results showed similar results from miRNA sequencing. Within these 9 tested miRNAs, hsa-miR-205-3p and hsa-miR-3909 showed a low degree of dispersion between the members of each group. Hsa miR-205-3p and hsa-miR-3909 were predicted to target the 3’UTR of IL-1β and IL1R1 respectively. This was verified by luciferase reporter assays. Immunohistochemistry and Western blot results showed that the mitral valve from rheumatic valve heart disease showed higher levels of IL- 1β and IL1R1 expression compared with congenital heart valve disease. This suggested a difference between rheumatic heart valve disease and other types of heart valve diseases, with more inflammatory responses in the former.

Conclusion

In the present study, by next generation sequencing of miRNAs, it was revealed that interleukin 1β and interleukin 1 receptor 1 was involved in rheumatic heart diseases. And this is useful for diagnosis and understanding of mechanism of rheumatic heart disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling. Int. J. Mol. Sci. 2016;17(7):1120. Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling. Int. J. Mol. Sci. 2016;17(7):1120.
2.
go back to reference Liu FZ, Xue YM, Liao HT, Zhan XZ, Guo HM, Huang HL, Fang XH, Wei W, Rao F, Deng H, Liu Y, Lin WD, Wu SL. Five-year epidemiological survey of valvular heart disease: changes in morbidity, etiological spectrum and management in a cardiovascular center of southern China. J Thorac Dis. 2014;6:1724–30.PubMedPubMedCentral Liu FZ, Xue YM, Liao HT, Zhan XZ, Guo HM, Huang HL, Fang XH, Wei W, Rao F, Deng H, Liu Y, Lin WD, Wu SL. Five-year epidemiological survey of valvular heart disease: changes in morbidity, etiological spectrum and management in a cardiovascular center of southern China. J Thorac Dis. 2014;6:1724–30.PubMedPubMedCentral
4.
go back to reference Li N, Lian J, Zhao S, Zheng D, Yang X, Huang X, Shi X, Sun L, Zhou Q, Shi H, Xu G, Incoom EK, Zhou J, Shao G. Detection of differentially expressed MicroRNAs in rheumatic heart disease: miR-1183 and miR-1299 as potential diagnostic biomarkers. Biomed Res Int. 2015;2015:524519.PubMedPubMedCentral Li N, Lian J, Zhao S, Zheng D, Yang X, Huang X, Shi X, Sun L, Zhou Q, Shi H, Xu G, Incoom EK, Zhou J, Shao G. Detection of differentially expressed MicroRNAs in rheumatic heart disease: miR-1183 and miR-1299 as potential diagnostic biomarkers. Biomed Res Int. 2015;2015:524519.PubMedPubMedCentral
5.
go back to reference Wang F, Lu J, Peng X, Wang J, Liu X, Chen X, Jiang Y, Li X, Zhang B. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res. 2016;35:17.CrossRefPubMedPubMedCentral Wang F, Lu J, Peng X, Wang J, Liu X, Chen X, Jiang Y, Li X, Zhang B. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res. 2016;35:17.CrossRefPubMedPubMedCentral
6.
go back to reference Fiedler SD, Carletti MZ, Christenson LK. Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol. 2010;630:49–64.CrossRefPubMed Fiedler SD, Carletti MZ, Christenson LK. Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol. 2010;630:49–64.CrossRefPubMed
7.
go back to reference Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.CrossRefPubMed Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.CrossRefPubMed
8.
go back to reference Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015 Aug 12;4 Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015 Aug 12;4
9.
go back to reference Dou L, Meng X, Sui X, Wang S, Shen T, Huang X, Guo J, Fang W, Man Y, Xi J, Li J. MiR-19a regulates PTEN expression to mediate glycogen synthesis in hepatocytes. Sci Rep. 2015;5:11602.CrossRefPubMedPubMedCentral Dou L, Meng X, Sui X, Wang S, Shen T, Huang X, Guo J, Fang W, Man Y, Xi J, Li J. MiR-19a regulates PTEN expression to mediate glycogen synthesis in hepatocytes. Sci Rep. 2015;5:11602.CrossRefPubMedPubMedCentral
10.
go back to reference Zhou JX, Zhu JF, Jiang L, Zhang BS, Zhu D, Wu YH. Interleukin 18 promotes myofibroblast activation of valvular interstitial cells. Int J Cardiol. 2016;221:998–1003.CrossRefPubMed Zhou JX, Zhu JF, Jiang L, Zhang BS, Zhu D, Wu YH. Interleukin 18 promotes myofibroblast activation of valvular interstitial cells. Int J Cardiol. 2016;221:998–1003.CrossRefPubMed
11.
go back to reference Rajamannan NM, Nealis TB, Subramaniam M, Pandya S, Stock SR, Ignatiev CI, Sebo TJ, Rosengart TK, Edwards WD, McCarthy PM, Bonow RO, Spelsberg TC. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation. 2005;111(24):3296–301.CrossRefPubMedPubMedCentral Rajamannan NM, Nealis TB, Subramaniam M, Pandya S, Stock SR, Ignatiev CI, Sebo TJ, Rosengart TK, Edwards WD, McCarthy PM, Bonow RO, Spelsberg TC. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation. 2005;111(24):3296–301.CrossRefPubMedPubMedCentral
14.
go back to reference Xu JH, Zhao JM, Evan G, Xiao CY, Cheng Y, Xiao JJ. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med. 2012;90:865–75.CrossRefPubMed Xu JH, Zhao JM, Evan G, Xiao CY, Cheng Y, Xiao JJ. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med. 2012;90:865–75.CrossRefPubMed
15.
18.
go back to reference Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12:14–24.CrossRefPubMed Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12:14–24.CrossRefPubMed
20.
go back to reference Gabay C, Arend WP. Treatment of rheumatoid arthritis with IL-1 inhibitors. Springer Semin Immunopathol. 1998;20:229–46.CrossRefPubMed Gabay C, Arend WP. Treatment of rheumatoid arthritis with IL-1 inhibitors. Springer Semin Immunopathol. 1998;20:229–46.CrossRefPubMed
21.
go back to reference Yegin O, Coskun M, Ertug H. Cytokines in acute rheumatic fever. Eur J Pediatr. 156(1997):25–9. Yegin O, Coskun M, Ertug H. Cytokines in acute rheumatic fever. Eur J Pediatr. 156(1997):25–9.
Metadata
Title
Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease
Authors
Qiyu Lu
Yi Sun
Yuyin Duan
Bin Li
Jianming Xia
Songhua Yu
Guimin Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2018
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0788-2

Other articles of this Issue 1/2018

BMC Cardiovascular Disorders 1/2018 Go to the issue