Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2018

Open Access 01-12-2018 | Research article

Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease

Authors: Hong Jin, Yifei Chen, Bilei Wang, Yi Zhu, Long Chen, Xiqiong Han, Genshan Ma, Naifeng Liu

Published in: BMC Cardiovascular Disorders | Issue 1/2018

Login to get access

Abstract

Background

Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in angiogenesis and maintenance of endothelial integrity. Whether circulating BDNF levels are associated with von Willebrand factor (vWF) levels, which are indicators of endothelial dysfunction is not known. This study investigated the association between plasma BNDF and vWF levels and whether these biomarkers could predict cardiovascular events at a 12-month follow-up in patients with stable coronary artery disease (CAD).

Methods

We recruited 234 patients with suspected angina pectoris. Subjects were divided into CAD (n = 143) and control (n = 91) groups based on coronary angiography. Plasma BDNF and vWF levels were measured using ELISA. Patients were followed-up for one year, and information on adverse cardiac events was collected.

Results

CAD patients exhibited significantly lower plasma BDNF and higher vWF levels than those of control patients. High vWF levels were associated with low BDNF levels even after adjustment for age, gender, low-density lipoprotein (LDL) levels, and the presence of diabetes mellitus. A receiver operating characteristic curve was used to determine whether low BDNF and high vWF levels could predict adverse cardiovascular events. The area under the curve for vWF and the inverse of BDNF were 0.774 and 0.804, respectively.

Conclusions

These findings suggest that endothelial dysfunction is an important determinant of the impaired circulating BDNF levels, and they further reflected cardiovascular prognosis in stable CAD patients.
Literature
1.
2.
go back to reference Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development. 2000;127:4531–40.PubMed Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development. 2000;127:4531–40.PubMed
3.
4.
go back to reference Usui T, Naruo A, Okada M, Hayabe Y, Yamawaki H. Brain-derived neurotrophic factor promotes angiogenic tube formation through generation of oxidative stress in human vascular endothelial cells. Acta Physiol (Oxf). 2014;211:385–94.CrossRef Usui T, Naruo A, Okada M, Hayabe Y, Yamawaki H. Brain-derived neurotrophic factor promotes angiogenic tube formation through generation of oxidative stress in human vascular endothelial cells. Acta Physiol (Oxf). 2014;211:385–94.CrossRef
5.
go back to reference Rosenfeld RD, Zeni L, Haniu M, Talvenheimo J, Radka SF, Bennett L, et al. Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expr Purif. 1995;6:465–71.CrossRefPubMed Rosenfeld RD, Zeni L, Haniu M, Talvenheimo J, Radka SF, Bennett L, et al. Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expr Purif. 1995;6:465–71.CrossRefPubMed
6.
go back to reference Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res. 2004;146:279–89.CrossRefPubMed Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res. 2004;146:279–89.CrossRefPubMed
7.
go back to reference Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50:431–8.CrossRefPubMed Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50:431–8.CrossRefPubMed
8.
go back to reference Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol. 2005;102:169–71.CrossRefPubMed Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol. 2005;102:169–71.CrossRefPubMed
9.
go back to reference Jiang H, Liu Y, Zhang Y, Chen ZY. Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun. 2011;415:99–103.CrossRefPubMed Jiang H, Liu Y, Zhang Y, Chen ZY. Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun. 2011;415:99–103.CrossRefPubMed
10.
go back to reference Kaess BM, Preis SR, Lieb W, Beiser AS, Yang Q, Chen TC, et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J Am Heart Assoc. 2015;4:e001544.CrossRefPubMedPubMedCentral Kaess BM, Preis SR, Lieb W, Beiser AS, Yang Q, Chen TC, et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J Am Heart Assoc. 2015;4:e001544.CrossRefPubMedPubMedCentral
11.
go back to reference Rodier M, Quirie A, Prigent-Tessier A, Bejot Y, Jacquin A, Mossiat C, et al. Relevance of post-stroke circulating BDNF levels as a prognostic biomarker of stroke outcome. Impact of rt-PA treatment. PLoS One. 2015;10:e0140668.CrossRefPubMedPubMedCentral Rodier M, Quirie A, Prigent-Tessier A, Bejot Y, Jacquin A, Mossiat C, et al. Relevance of post-stroke circulating BDNF levels as a prognostic biomarker of stroke outcome. Impact of rt-PA treatment. PLoS One. 2015;10:e0140668.CrossRefPubMedPubMedCentral
12.
go back to reference Kim KW, Won YL, Ko KS, Roh JW. Smoking habits and neuropeptides: adiponectin, brain-derived neurotrophic factor, and leptin levels. Toxicol Res. 2014;30:91–7.CrossRefPubMedPubMedCentral Kim KW, Won YL, Ko KS, Roh JW. Smoking habits and neuropeptides: adiponectin, brain-derived neurotrophic factor, and leptin levels. Toxicol Res. 2014;30:91–7.CrossRefPubMedPubMedCentral
13.
go back to reference Leckie RL, Oberlin LE, Voss MW, Prakash RS, Szabo-Reed A, Chaddock-Heyman L, et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci. 2014;8:985.CrossRefPubMedPubMedCentral Leckie RL, Oberlin LE, Voss MW, Prakash RS, Szabo-Reed A, Chaddock-Heyman L, et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci. 2014;8:985.CrossRefPubMedPubMedCentral
14.
go back to reference Prigent-Tessier A, Quirie A, Maguin-Gate K, Szostak J, Mossiat C, Nappey M, et al. Physical training and hypertension have opposite effects on endothelial brain-derived neurotrophic factor expression. Cardiovasc Res. 2013;100:374–82.CrossRefPubMed Prigent-Tessier A, Quirie A, Maguin-Gate K, Szostak J, Mossiat C, Nappey M, et al. Physical training and hypertension have opposite effects on endothelial brain-derived neurotrophic factor expression. Cardiovasc Res. 2013;100:374–82.CrossRefPubMed
15.
go back to reference Monnier A, Garnier P, Quirie A, Pernet N, Demougeot C, Marie C, et al. Effect of short-term exercise training on brain-derived neurotrophic factor signaling in spontaneously hypertensive rats. J Hypertens. 2017;35:279–90.CrossRefPubMed Monnier A, Garnier P, Quirie A, Pernet N, Demougeot C, Marie C, et al. Effect of short-term exercise training on brain-derived neurotrophic factor signaling in spontaneously hypertensive rats. J Hypertens. 2017;35:279–90.CrossRefPubMed
16.
go back to reference Lee IT, Lee WJ, Tsai IC, Liang KW, Lin SY, Wan CJ, et al. Brain-derived neurotrophic factor not associated with metabolic syndrome but inversely correlated with vascular cell adhesion molecule-1 in men without diabetes. Clin Chim Acta. 2012;413:944–8.CrossRefPubMed Lee IT, Lee WJ, Tsai IC, Liang KW, Lin SY, Wan CJ, et al. Brain-derived neurotrophic factor not associated with metabolic syndrome but inversely correlated with vascular cell adhesion molecule-1 in men without diabetes. Clin Chim Acta. 2012;413:944–8.CrossRefPubMed
17.
go back to reference Smith AJ, Malan L, Uys AS, Malan NT, Harvey BH, Ziemssen T. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study. J Hum Hypertens. 2015;29:33–9.CrossRefPubMed Smith AJ, Malan L, Uys AS, Malan NT, Harvey BH, Ziemssen T. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study. J Hum Hypertens. 2015;29:33–9.CrossRefPubMed
18.
go back to reference Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.CrossRefPubMed Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.CrossRefPubMed
20.
go back to reference Vischer UM. Von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006;4:1186–93.CrossRefPubMed Vischer UM. Von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006;4:1186–93.CrossRefPubMed
21.
go back to reference Sonneveld MA, Cheng JM, Oemrawsingh RM, de Maat MP, Kardys I, Garcia-Garcia HM, et al. Von Willebrand factor in relation to coronary plaque characteristics and cardiovascular outcome. Results of the ATHEROREMO-IVUS study. Thromb Haemost. 2015;113:577–84.CrossRefPubMed Sonneveld MA, Cheng JM, Oemrawsingh RM, de Maat MP, Kardys I, Garcia-Garcia HM, et al. Von Willebrand factor in relation to coronary plaque characteristics and cardiovascular outcome. Results of the ATHEROREMO-IVUS study. Thromb Haemost. 2015;113:577–84.CrossRefPubMed
22.
go back to reference Hu DY. New guidelines and evidence for the prevention and treatment of dyslipidemia and atherosclerotic cardiovascular disease in China. Zhonghua Xin Xue Guan Bing Za Zhi. 2016;44:826–7.PubMed Hu DY. New guidelines and evidence for the prevention and treatment of dyslipidemia and atherosclerotic cardiovascular disease in China. Zhonghua Xin Xue Guan Bing Za Zhi. 2016;44:826–7.PubMed
23.
go back to reference Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999–3054.CrossRefPubMed Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999–3054.CrossRefPubMed
24.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefPubMed
25.
go back to reference Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.CrossRefPubMed Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.CrossRefPubMed
26.
go back to reference Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189:865–70.CrossRefPubMedPubMedCentral Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189:865–70.CrossRefPubMedPubMedCentral
27.
go back to reference Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37:1553–61.CrossRefPubMed Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37:1553–61.CrossRefPubMed
28.
go back to reference Bejot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS One. 2011;6:e29405.CrossRefPubMedPubMedCentral Bejot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS One. 2011;6:e29405.CrossRefPubMedPubMedCentral
29.
go back to reference Monteleone P, Artini PG, Simi G, Cela V, Casarosa E, Begliuomini S, et al. Brain derived neurotrophic factor circulating levels in patients undergoing IVF. J Assist Reprod Genet. 2007;24:477–80.CrossRefPubMedPubMedCentral Monteleone P, Artini PG, Simi G, Cela V, Casarosa E, Begliuomini S, et al. Brain derived neurotrophic factor circulating levels in patients undergoing IVF. J Assist Reprod Genet. 2007;24:477–80.CrossRefPubMedPubMedCentral
30.
go back to reference Golden E, Emiliano A, Maudsley S, Windham BG, Carlson OD, Egan JM, et al. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore longitudinal study of aging. PLoS One. 2010;5:e10099.CrossRefPubMedPubMedCentral Golden E, Emiliano A, Maudsley S, Windham BG, Carlson OD, Egan JM, et al. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore longitudinal study of aging. PLoS One. 2010;5:e10099.CrossRefPubMedPubMedCentral
31.
go back to reference Lip GY, Blann A. Von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res. 1997;34:255–65.CrossRefPubMed Lip GY, Blann A. Von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res. 1997;34:255–65.CrossRefPubMed
32.
go back to reference Ding J, Chen Q, Zhuang X, Feng Z, Xu L, Chen F. Low paraoxonase 1 arylesterase activity and high von Willebrand factor levels are associated with severe coronary atherosclerosis in patients with non-diabetic stable coronary artery disease. Med Sci Monit. 2014;20:2421–9.CrossRefPubMedPubMedCentral Ding J, Chen Q, Zhuang X, Feng Z, Xu L, Chen F. Low paraoxonase 1 arylesterase activity and high von Willebrand factor levels are associated with severe coronary atherosclerosis in patients with non-diabetic stable coronary artery disease. Med Sci Monit. 2014;20:2421–9.CrossRefPubMedPubMedCentral
33.
go back to reference Ruef J, Marz W, Winkelmann BR. Markers for endothelial dysfunction, but not markers for oxidative stress correlate with classical risk factors and the severity of coronary artery disease. (a subgroup analysis from the Ludwigshafen risk and cardiovascular health study). Scand Cardiovasc J. 2006;40:274–9.CrossRefPubMed Ruef J, Marz W, Winkelmann BR. Markers for endothelial dysfunction, but not markers for oxidative stress correlate with classical risk factors and the severity of coronary artery disease. (a subgroup analysis from the Ludwigshafen risk and cardiovascular health study). Scand Cardiovasc J. 2006;40:274–9.CrossRefPubMed
34.
go back to reference Li Q, Zhang Z, Du R, Hu X, Yan Y, Gao Q, et al. Association analysis between endothelial function related factors and coronary artery stenosis degree in coronary heart disease patients with type 2 diabetes mellitus. J Pediatr Endocrinol Metab. 2012;25:711–6.CrossRefPubMed Li Q, Zhang Z, Du R, Hu X, Yan Y, Gao Q, et al. Association analysis between endothelial function related factors and coronary artery stenosis degree in coronary heart disease patients with type 2 diabetes mellitus. J Pediatr Endocrinol Metab. 2012;25:711–6.CrossRefPubMed
35.
go back to reference Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–9.CrossRefPubMed Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–9.CrossRefPubMed
36.
go back to reference Navaratna D, Guo SZ, Hayakawa K, Wang X, Gerhardinger C, Lo EH. Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes. 2011;60:1789–96.CrossRefPubMedPubMedCentral Navaratna D, Guo SZ, Hayakawa K, Wang X, Gerhardinger C, Lo EH. Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes. 2011;60:1789–96.CrossRefPubMedPubMedCentral
37.
go back to reference Whincup PH, Danesh J, Walker M, Lennon L, Thomson A, Appleby P, et al. Von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur Heart J. 2002;23:1764–70.CrossRefPubMed Whincup PH, Danesh J, Walker M, Lennon L, Thomson A, Appleby P, et al. Von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur Heart J. 2002;23:1764–70.CrossRefPubMed
38.
go back to reference Wannamethee SG, Whincup PH, Shaper AG, Rumley A, Lennon L, Lowe GD. Circulating inflammatory and hemostatic biomarkers are associated with risk of myocardial infarction and coronary death, but not angina pectoris, in older men. J Thromb Haemost. 2009;7:1605–11.CrossRefPubMedPubMedCentral Wannamethee SG, Whincup PH, Shaper AG, Rumley A, Lennon L, Lowe GD. Circulating inflammatory and hemostatic biomarkers are associated with risk of myocardial infarction and coronary death, but not angina pectoris, in older men. J Thromb Haemost. 2009;7:1605–11.CrossRefPubMedPubMedCentral
39.
go back to reference van Loon JE, Kavousi M, Leebeek FW, Felix JF, Hofman A, Witteman JC, et al. Von Willebrand factor plasma levels, genetic variations and coronary heart disease in an older population. J Thromb Haemost. 2012;10:1262–9.CrossRefPubMed van Loon JE, Kavousi M, Leebeek FW, Felix JF, Hofman A, Witteman JC, et al. Von Willebrand factor plasma levels, genetic variations and coronary heart disease in an older population. J Thromb Haemost. 2012;10:1262–9.CrossRefPubMed
40.
go back to reference Willeit P, Thompson A, Aspelund T, Rumley A, Eiriksdottir G, Lowe G, et al. Hemostatic factors and risk of coronary heart disease in general populations: new prospective study and updated meta-analyses. PLoS One. 2013;8:e55175.CrossRefPubMedPubMedCentral Willeit P, Thompson A, Aspelund T, Rumley A, Eiriksdottir G, Lowe G, et al. Hemostatic factors and risk of coronary heart disease in general populations: new prospective study and updated meta-analyses. PLoS One. 2013;8:e55175.CrossRefPubMedPubMedCentral
41.
go back to reference Jiang H, Huang S, Li X, Li X, Huang S, Zhang Y, et al. Endothelial tyrosine kinase receptor B prevents VE-cadherin cleavage and protects against atherosclerotic lesion development in ApoE−/− mice. Oncotarget. 2015;6:30640–9.PubMedPubMedCentral Jiang H, Huang S, Li X, Li X, Huang S, Zhang Y, et al. Endothelial tyrosine kinase receptor B prevents VE-cadherin cleavage and protects against atherosclerotic lesion development in ApoE−/− mice. Oncotarget. 2015;6:30640–9.PubMedPubMedCentral
42.
go back to reference Noren Hooten N, Ejiogu N, Zonderman AB, Evans MK. Protective effects of BDNF against C-reactive protein-induced inflammation in women. Mediat Inflamm. 2015;2015:516783.CrossRef Noren Hooten N, Ejiogu N, Zonderman AB, Evans MK. Protective effects of BDNF against C-reactive protein-induced inflammation in women. Mediat Inflamm. 2015;2015:516783.CrossRef
Metadata
Title
Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease
Authors
Hong Jin
Yifei Chen
Bilei Wang
Yi Zhu
Long Chen
Xiqiong Han
Genshan Ma
Naifeng Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2018
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0762-z

Other articles of this Issue 1/2018

BMC Cardiovascular Disorders 1/2018 Go to the issue