Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Research article

In-vitro examination of the positive inotropic effect of caffeine and taurine, the two most frequent active ingredients of energy drinks

Authors: R. Chaban, A. Kornberger, N. Branski, K. Buschmann, N. Stumpf, A. Beiras-Fernandez, C.F. Vahl

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

Our study aimed to evaluate changes in the contractile behavior of human myocardium after exposure to caffeine and taurine, the main active ingredients of energy drinks (EDs), and to evaluate whether taurine exhibits any inotropic effect at all in the dosages commonly used in EDs.

Methods

Myocardial tissue was removed from the right atrial appendages of patients undergoing cardiac surgery and prepared to obtain specimens measuring 4 mm in length. A total of 92 specimens were exposed to electrical impulses at a frequency of 75 bpm for at least 40 min to elicit their maximum contractile force before measuring the isometric contractile force (ICF) and duration of contraction (CD). Following this, each specimen was treated with either taurine (group 1, n = 29), or caffeine (group 2, n = 31) or both (group 3, n = 32). After exposure, ICF and CD measuring were repeated. Post-treatment values were compared with pre-treatments values and indicated as percentages.

Results

Exposure to taurine did not alter the contraction behavior of the specimens. Exposure to caffeine, in contrast, led to a significant increase in ICF (118 ± 03%, p < 0.01) und a marginal decrease in CD (95 ± 1.6%, p < 0.01). Exposure to a combination of caffeine and taurine also induced a statistically significant increase in ICF (124 ± 4%, p < 0.01) and a subtle reduction in CD (92 ± 1.4%, p < 0.01). The increase in ICF achieved by administration of caffeine was similar to that achieved by a combination of both caffeine and taurine (p = 0.2).
The relative ICF levels achieved by administration of caffeine and a combination of taurine and caffeine, respectively, were both significantly higher (p < 0.01) than the ICF resulting from exposure to taurine only.

Conclusion

While caffeine altered the contraction behavior of the specimen significantly in our in-vitro model, taurine did not exhibit a significant effect. Adding taurine to caffeine did not significantly enhance or reduce the effect of caffeine.
Literature
1.
go back to reference Alford C, Cox H, Wescott R. The effects of Red Bull Energy Drink on human performance and mood. Amino Acids. 2001;21:139–50.CrossRef Alford C, Cox H, Wescott R. The effects of Red Bull Energy Drink on human performance and mood. Amino Acids. 2001;21:139–50.CrossRef
2.
go back to reference Ivy JL, Kammer L, Ding Z, Wang B, Bernard JR, Liao YH, Hwang J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab. 2009;19:61–78.CrossRef Ivy JL, Kammer L, Ding Z, Wang B, Bernard JR, Liao YH, Hwang J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab. 2009;19:61–78.CrossRef
3.
go back to reference Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, et al. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr. 2013;10:1.CrossRef Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, et al. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr. 2013;10:1.CrossRef
4.
go back to reference Bailey RL, Saldahna LG, Gahche JJ, Dwyer JT. Estimated caffeine intake from EDs and dietary supplements in the United States. Nutr Rev. 2014;72:9–13.CrossRef Bailey RL, Saldahna LG, Gahche JJ, Dwyer JT. Estimated caffeine intake from EDs and dietary supplements in the United States. Nutr Rev. 2014;72:9–13.CrossRef
5.
go back to reference Heckman MA, Weil J, De Mejia EG. Caffeine (1, 3, 7-trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J Food Sci. 2010;75:R77–87.CrossRef Heckman MA, Weil J, De Mejia EG. Caffeine (1, 3, 7-trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J Food Sci. 2010;75:R77–87.CrossRef
6.
go back to reference Balogh A, Harder S, Vollandt R, Staib AH. Intra-individual variability of caffeine elimination in healthy subjects. Int J Clin Pharmacol Ther Toxicol. 1992;30:383–7.PubMed Balogh A, Harder S, Vollandt R, Staib AH. Intra-individual variability of caffeine elimination in healthy subjects. Int J Clin Pharmacol Ther Toxicol. 1992;30:383–7.PubMed
7.
go back to reference Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jéquier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33:989–97.CrossRef Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jéquier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33:989–97.CrossRef
8.
go back to reference Schaffer SW, Jong CJ, Ramikla KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17:2.CrossRef Schaffer SW, Jong CJ, Ramikla KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17:2.CrossRef
9.
go back to reference Lourenço R, Camilo ME. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002;17:262–70.PubMed Lourenço R, Camilo ME. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002;17:262–70.PubMed
10.
go back to reference Schaffer SW, Ramila KC, Jong CJ, Shetewy A, Shimada K, Ito T, Azuma J, Cioffi E. Does taurine prolong lifespan by improving heart function? Adv Exp Med Biol. 2015;803:555–70.CrossRef Schaffer SW, Ramila KC, Jong CJ, Shetewy A, Shimada K, Ito T, Azuma J, Cioffi E. Does taurine prolong lifespan by improving heart function? Adv Exp Med Biol. 2015;803:555–70.CrossRef
11.
go back to reference Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J. 1992;56:95–9.CrossRef Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J. 1992;56:95–9.CrossRef
12.
go back to reference Amura A, Tanaka Y, Kishimoto S, Sperelakis N. Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J. 1986;112:1278–84.CrossRef Amura A, Tanaka Y, Kishimoto S, Sperelakis N. Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J. 1986;112:1278–84.CrossRef
13.
go back to reference Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol. 1998;30:451–63.CrossRef Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol. 1998;30:451–63.CrossRef
14.
go back to reference Xu YJ, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol. 2008;13:57–65.PubMedPubMedCentral Xu YJ, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol. 2008;13:57–65.PubMedPubMedCentral
15.
go back to reference Grasser EK, Yepuri G, Dulloo AG, Montani JP. Cardio- and cerebrovascular responses to the ED Red Bull in young adults: a randomized cross-over study. Eur J Nutr. 2014;53:1561–71.CrossRef Grasser EK, Yepuri G, Dulloo AG, Montani JP. Cardio- and cerebrovascular responses to the ED Red Bull in young adults: a randomized cross-over study. Eur J Nutr. 2014;53:1561–71.CrossRef
16.
go back to reference Svatikova A, Covassin N, Somers KR, Somers KV, Soucek F, Kara T, Bukartyk J. A randomized trial of cardiovascular responses to ED consumption in healthy adults. JAMA. 2015;314:2079–82.CrossRef Svatikova A, Covassin N, Somers KR, Somers KV, Soucek F, Kara T, Bukartyk J. A randomized trial of cardiovascular responses to ED consumption in healthy adults. JAMA. 2015;314:2079–82.CrossRef
17.
go back to reference Pincomb GA, Lovallo WR, Passey RB, Whitsett TL, Silverstein SM, Wilson MF. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. Am J Cardiol. 1985;56:119–22.CrossRef Pincomb GA, Lovallo WR, Passey RB, Whitsett TL, Silverstein SM, Wilson MF. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. Am J Cardiol. 1985;56:119–22.CrossRef
18.
go back to reference Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol. 2004;93:1022–6.CrossRef Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol. 2004;93:1022–6.CrossRef
19.
go back to reference Menci D, Righini FM, Cameli M, Lisi M, Benincasa S, Focardi M, Mondillo S. Acute effects of an ED on myocardial function assessed by conventional echo-doppler analysis and by speckle tracking echocardiography on young healthy subjects. J Amino Acids. 2013; Menci D, Righini FM, Cameli M, Lisi M, Benincasa S, Focardi M, Mondillo S. Acute effects of an ED on myocardial function assessed by conventional echo-doppler analysis and by speckle tracking echocardiography on young healthy subjects. J Amino Acids. 2013;
20.
go back to reference Baum M, Weiss M. The influence of a taurine containing drink on cardiac parameters before and after exercise measured by echocardiography. Amino Acids. 2001;20:75–82.CrossRef Baum M, Weiss M. The influence of a taurine containing drink on cardiac parameters before and after exercise measured by echocardiography. Amino Acids. 2001;20:75–82.CrossRef
21.
go back to reference Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Hornsi R, Nadal J, Schild HH, Thomas DK. Caffeine and taurine containing ED increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015;31:595–601.CrossRef Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Hornsi R, Nadal J, Schild HH, Thomas DK. Caffeine and taurine containing ED increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015;31:595–601.CrossRef
22.
go back to reference Kaplan GB, Greenblatt DJ, Ehrenberg BL, et al. Dose-Dependent Pharmacokinetics and Psychomotor Effects of Caffeine in Humans. J Clin Pharmacol. 1997;37:693–703.CrossRef Kaplan GB, Greenblatt DJ, Ehrenberg BL, et al. Dose-Dependent Pharmacokinetics and Psychomotor Effects of Caffeine in Humans. J Clin Pharmacol. 1997;37:693–703.CrossRef
23.
go back to reference Baselt R. Disposition of Toxic Drugs and Chemicals in Man. 9th ed. Seal Beach: Biomedical Publications; 2011. p. 236–9. ISBN 978-0-931890-08-6 Baselt R. Disposition of Toxic Drugs and Chemicals in Man. 9th ed. Seal Beach: Biomedical Publications; 2011. p. 236–9. ISBN 978-0-931890-08-6
24.
25.
go back to reference Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Homsi R, Nadal J, Schild HH, Thomas DK. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015;31:595–601.CrossRef Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Homsi R, Nadal J, Schild HH, Thomas DK. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015;31:595–601.CrossRef
26.
go back to reference Leite-Moreira AF, Correia-Pinto J, Gillebert TC. Load dependence of left ventricular contraction and relaxation effects of caffeine. Basic Res Cardiol. 1999;94:284–93.CrossRef Leite-Moreira AF, Correia-Pinto J, Gillebert TC. Load dependence of left ventricular contraction and relaxation effects of caffeine. Basic Res Cardiol. 1999;94:284–93.CrossRef
27.
go back to reference Fujii W, Tkaaki M, Yoshida A, Ishidate H, Ito H, Suga H. Effects of intracoronary caffeine on left ventricular mechanoenergetics in Ca2+ overload failing rat hearts. Jpn J Physiol. 1998;48:373–81.CrossRef Fujii W, Tkaaki M, Yoshida A, Ishidate H, Ito H, Suga H. Effects of intracoronary caffeine on left ventricular mechanoenergetics in Ca2+ overload failing rat hearts. Jpn J Physiol. 1998;48:373–81.CrossRef
28.
go back to reference Rasmussen CAF Jr, Sutko JL, Barry WH. Effects of ryanodine and caffeine on contractility, membrane voltage and calcium exchange in cultured heart cells. Cir Res. 1987;60:495–504.CrossRef Rasmussen CAF Jr, Sutko JL, Barry WH. Effects of ryanodine and caffeine on contractility, membrane voltage and calcium exchange in cultured heart cells. Cir Res. 1987;60:495–504.CrossRef
29.
go back to reference Jourdon P, Auclair MC, Lechat P. Caffeine effects on mechanical activity in newborn rat myocardium. J Mol Cell Cardiol. 1981;13:861–5.CrossRef Jourdon P, Auclair MC, Lechat P. Caffeine effects on mechanical activity in newborn rat myocardium. J Mol Cell Cardiol. 1981;13:861–5.CrossRef
30.
go back to reference Hess P, Wier WG. Excitation-concentration coupling in cardiac Purkinje fibers. Effects of caffeine on the intracellular [Ca2+] transient, membrane currents and contraction. J Gen Physiol. 1984;83:417–33.CrossRef Hess P, Wier WG. Excitation-concentration coupling in cardiac Purkinje fibers. Effects of caffeine on the intracellular [Ca2+] transient, membrane currents and contraction. J Gen Physiol. 1984;83:417–33.CrossRef
31.
go back to reference Nayler. Effect of caffeine on cardiac contractile activity and radicalcium movement. Am J Phys. 1963;204:969–74.CrossRef Nayler. Effect of caffeine on cardiac contractile activity and radicalcium movement. Am J Phys. 1963;204:969–74.CrossRef
32.
go back to reference Blinks JR, Olson CB, Jewell BR, Braveny P. Influences of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Circ Res. 1972;30:367–92.CrossRef Blinks JR, Olson CB, Jewell BR, Braveny P. Influences of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Circ Res. 1972;30:367–92.CrossRef
33.
go back to reference Giacomin E, Palmerini E, Ballo P, Zacá V, Bova G, Mondillo S. Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects. Cardiovasc Ultrasound. 2008;6:9.CrossRef Giacomin E, Palmerini E, Ballo P, Zacá V, Bova G, Mondillo S. Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects. Cardiovasc Ultrasound. 2008;6:9.CrossRef
34.
go back to reference Grasser EK, Miles-Chan JL, Charrière N, Loonam CR, Dulloo AG, Montani JP. Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms. Adv Nutr. 2016;7:950–60.CrossRef Grasser EK, Miles-Chan JL, Charrière N, Loonam CR, Dulloo AG, Montani JP. Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms. Adv Nutr. 2016;7:950–60.CrossRef
Metadata
Title
In-vitro examination of the positive inotropic effect of caffeine and taurine, the two most frequent active ingredients of energy drinks
Authors
R. Chaban
A. Kornberger
N. Branski
K. Buschmann
N. Stumpf
A. Beiras-Fernandez
C.F. Vahl
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-017-0625-z

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue