Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Case report

Cardiac amyloidosis mimicking severe aortic valve stenosis – a case report demonstrating diagnostic pitfalls and role of dobutamine stress echocardiography

Authors: Tim Salinger, Kai Hu, Dan Liu, Sebastian Herrmann, Kristina Lorenz, Georg Ertl, Peter Nordbeck

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

Aortic valve stenosis is a common finding diagnosed with high sensitivity in transthoracic echocardiography, but the examiner often finds himself confronted with uncertain results in patients with moderate pressure gradients and concomitant systolic heart failure. While patients with true-severe low-gradient aortic valve stenosis with either reduced or preserved left ventricular systolic function are primarily candidates for valve replacement, there is a relevant proportion of patients with pseudo-severe aortic valve stenosis anticipated not to benefit but actually rather deteriorate by interventional therapy or surgery.

Case presentation

In this article we present a case report of a male patient with pseudo-severe aortic valve stenosis due to cardiac amyloidosis highlighting the diagnostic schedule. The patient underwent stress echocardiography because of discrepant findings in transthoracic echocardiography and cardiac catheterization regarding the severity of aortic valve stenosis. After evaluation of the results, it became clear that he had a need for optimum heart failure medication and implantation of a cardiac resynchronization therapy defibrillator.

Conclusion

Due to the pitfalls in conventional as well as invasive diagnostics at rest, Stress echocardiography should be considered part of the standard optimum diagnostic spectrum in all unclear or borderline cases in order to confirm the correct diagnosis and constitute optimal therapy.
Literature
1.
go back to reference Nkomo VT, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.CrossRefPubMed Nkomo VT, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.CrossRefPubMed
2.
go back to reference Lindroos M, et al. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993;21(5):1220–5.CrossRefPubMed Lindroos M, et al. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993;21(5):1220–5.CrossRefPubMed
3.
go back to reference Joint Task Force on the Management of Valvular Heart Disease of the European Society of, C, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.CrossRef Joint Task Force on the Management of Valvular Heart Disease of the European Society of, C, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.CrossRef
4.
go back to reference Horstkotte D, Loogen F. The natural history of aortic valve stenosis. Eur Heart J. 1988;9(Suppl E):57–64. Horstkotte D, Loogen F. The natural history of aortic valve stenosis. Eur Heart J. 1988;9(Suppl E):57–64.
5.
go back to reference Rezzoug N, et al. Prevalence and Prognostic Impact of Valve Area-Gradient Patterns in Patients >/=80 Years With Moderate-to-Severe Aortic Stenosis (from the Prospective BELFRAIL Study). Am J Cardiol. 2015;116(6):925–32.CrossRefPubMed Rezzoug N, et al. Prevalence and Prognostic Impact of Valve Area-Gradient Patterns in Patients >/=80 Years With Moderate-to-Severe Aortic Stenosis (from the Prospective BELFRAIL Study). Am J Cardiol. 2015;116(6):925–32.CrossRefPubMed
6.
go back to reference Herrmann S, et al. Differences in natural history of low- and high-gradient aortic stenosis from nonsevere to severe stage of the disease. J Am Soc Echocardiogr. 2015;28(11):1270–82. e4.CrossRefPubMed Herrmann S, et al. Differences in natural history of low- and high-gradient aortic stenosis from nonsevere to severe stage of the disease. J Am Soc Echocardiogr. 2015;28(11):1270–82. e4.CrossRefPubMed
7.
go back to reference Fougeres E, et al. Outcomes of pseudo-severe aortic stenosis under conservative treatment. Eur Heart J. 2012;33(19):2426–33.CrossRefPubMed Fougeres E, et al. Outcomes of pseudo-severe aortic stenosis under conservative treatment. Eur Heart J. 2012;33(19):2426–33.CrossRefPubMed
8.
go back to reference Kamperidis V, et al. Low gradient severe aortic stenosis with preserved ejection fraction: reclassification of severity by fusion of Doppler and computed tomographic data. Eur Heart J. 2015;36(31):2087–96.CrossRefPubMed Kamperidis V, et al. Low gradient severe aortic stenosis with preserved ejection fraction: reclassification of severity by fusion of Doppler and computed tomographic data. Eur Heart J. 2015;36(31):2087–96.CrossRefPubMed
9.
go back to reference Pibarot P, Dumesnil JG. Aortic stenosis suspected to be severe despite low gradients. Circ Cardiovasc Imaging. 2014;7(3):545–51.CrossRefPubMed Pibarot P, Dumesnil JG. Aortic stenosis suspected to be severe despite low gradients. Circ Cardiovasc Imaging. 2014;7(3):545–51.CrossRefPubMed
10.
go back to reference Phelan D, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.CrossRefPubMed Phelan D, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.CrossRefPubMed
11.
go back to reference Nishimura RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–e132.CrossRefPubMed Nishimura RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–e132.CrossRefPubMed
12.
go back to reference Monin J-L, et al. Low-Gradient Aortic Stenosis: Operative Risk Stratification and Predictors for Long-Term Outcome: A Multicenter Study Using Dobutamine Stress Hemodynamics. Circulation. 2003;108(3):319–24.CrossRefPubMed Monin J-L, et al. Low-Gradient Aortic Stenosis: Operative Risk Stratification and Predictors for Long-Term Outcome: A Multicenter Study Using Dobutamine Stress Hemodynamics. Circulation. 2003;108(3):319–24.CrossRefPubMed
13.
go back to reference de Filippi CR, et al. Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol. 1995;75(2):191–4.CrossRef de Filippi CR, et al. Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol. 1995;75(2):191–4.CrossRef
14.
go back to reference Schwammenthal E, et al. Dobutamine echocardiography in patients with aortic stenosis and left ventricular dysfunction: predicting outcome as a function of management strategy. Chest. 2001;119(6):1766–77.CrossRefPubMed Schwammenthal E, et al. Dobutamine echocardiography in patients with aortic stenosis and left ventricular dysfunction: predicting outcome as a function of management strategy. Chest. 2001;119(6):1766–77.CrossRefPubMed
15.
go back to reference Clavel MA, et al. Validation of Conventional and Simplified Methods to Calculate Projected Valve Area at Normal Flow Rate in Patients with Low Flow, Low Gradient Aortic Stenosis. The Multicenter TOPAS (True Or Pseudo Severe Aortic Stenosis) Study. Cardiology. 2010;115(4):258. Clavel MA, et al. Validation of Conventional and Simplified Methods to Calculate Projected Valve Area at Normal Flow Rate in Patients with Low Flow, Low Gradient Aortic Stenosis. The Multicenter TOPAS (True Or Pseudo Severe Aortic Stenosis) Study. Cardiology. 2010;115(4):258.
17.
go back to reference Baba Y, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J. 2012;53(5):287–92.CrossRefPubMed Baba Y, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J. 2012;53(5):287–92.CrossRefPubMed
19.
20.
go back to reference Longhi S, et al. Coexistence of Degenerative Aortic Stenosis and Wild-Type Transthyretin-Related Cardiac Amyloidosis. JACC Cardiovasc Imaging. 2016;9(3):325–7.CrossRefPubMed Longhi S, et al. Coexistence of Degenerative Aortic Stenosis and Wild-Type Transthyretin-Related Cardiac Amyloidosis. JACC Cardiovasc Imaging. 2016;9(3):325–7.CrossRefPubMed
21.
go back to reference Nietlispach F, et al. Pathology of transcatheter valve therapy. JACC Cardiovasc Interv. 2012;5(5):582–90.CrossRefPubMed Nietlispach F, et al. Pathology of transcatheter valve therapy. JACC Cardiovasc Interv. 2012;5(5):582–90.CrossRefPubMed
22.
go back to reference Galat A, et al. Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg? Eur Heart J. 2016;37(47):3525–3531. Galat A, et al. Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg? Eur Heart J. 2016;37(47):3525–3531.
23.
go back to reference Treibel TA, et al. Occult Transthyretin Cardiac Amyloid in Severe Calcific Aortic Stenosis: Prevalence and Prognosis in Patients Undergoing Surgical Aortic Valve Replacement. Circ Cardiovasc Imaging. 2016;9(8). doi:10.1161/CIRCIMAGING.116.005066. Treibel TA, et al. Occult Transthyretin Cardiac Amyloid in Severe Calcific Aortic Stenosis: Prevalence and Prognosis in Patients Undergoing Surgical Aortic Valve Replacement. Circ Cardiovasc Imaging. 2016;9(8). doi:10.​1161/​CIRCIMAGING.​116.​005066.
24.
go back to reference Di Bella G, et al. The mosaic of the cardiac amyloidosis diagnosis: role of imaging in subtypes and stages of the disease. Eur Heart J Cardiovasc Imaging. 2014;15(12):1307–15.CrossRefPubMed Di Bella G, et al. The mosaic of the cardiac amyloidosis diagnosis: role of imaging in subtypes and stages of the disease. Eur Heart J Cardiovasc Imaging. 2014;15(12):1307–15.CrossRefPubMed
25.
go back to reference Hu K, et al. Impact of monitoring longitudinal systolic strain changes during serial echocardiography on outcome in patients with AL amyloidosis. Int J Cardiovasc Imaging. 2015;31(7):1401–12.CrossRefPubMed Hu K, et al. Impact of monitoring longitudinal systolic strain changes during serial echocardiography on outcome in patients with AL amyloidosis. Int J Cardiovasc Imaging. 2015;31(7):1401–12.CrossRefPubMed
26.
go back to reference Ternacle J, et al. Causes and Consequences of Longitudinal LV Dysfunction Assessed by 2D Strain Echocardiography in Cardiac Amyloidosis. JACC Cardiovasc Imaging. 2016;9(2):126–38. Ternacle J, et al. Causes and Consequences of Longitudinal LV Dysfunction Assessed by 2D Strain Echocardiography in Cardiac Amyloidosis. JACC Cardiovasc Imaging. 2016;9(2):126–38.
27.
Metadata
Title
Cardiac amyloidosis mimicking severe aortic valve stenosis – a case report demonstrating diagnostic pitfalls and role of dobutamine stress echocardiography
Authors
Tim Salinger
Kai Hu
Dan Liu
Sebastian Herrmann
Kristina Lorenz
Georg Ertl
Peter Nordbeck
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-017-0519-0

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue