Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2016

Open Access 01-12-2016 | Research article

Primary skeletal muscle myoblasts from chronic heart failure patients exhibit loss of anti-inflammatory and proliferative activity

Authors: Tahnee Sente, An M. Van Berendoncks, An I. Jonckheere, Richard J. Rodenburg, Patrick Lauwers, Viviane Van Hoof, An Wouters, Filip Lardon, Vicky Y. Hoymans, Christiaan J. Vrints

Published in: BMC Cardiovascular Disorders | Issue 1/2016

Login to get access

Abstract

Background

Peripheral skeletal muscle wasting is a common finding with adverse effects in chronic heart failure (HF). Whereas its clinical relevance is beyond doubt, the underlying pathophysiological mechanisms are not yet fully elucidated. We aimed to introduce and characterize the primary culture of skeletal muscle cells from individual HF patients as a supportive model to study this muscle loss.

Methods and results

Primary myoblast and myotubes cultures were successfully propagated from the m. vastus lateralis of 6 HF patients with reduced ejection fraction (HFrEF; LVEF <45 %) and 6 age and gender-matched healthy donors. HFrEF cultures were not different from healthy donors in terms of morphology, such as myoblast size, shape and actin microfilament. Differentiation and fusion indexes were identical between groups. Myoblast proliferation in logarithmic growth phase, however, was attenuated in the HFrEF group (p = 0.032). In addition, HFrEF myoblasts are characterized by a reduced TNFR2 expression and IL-6 secretion (p = 0.017 and p = 0.016; respectively).

Conclusion

Biopsy derived primary skeletal muscle myoblasts of HFrEF patients produce similar morphological and myogenic differentiation responses as myoblasts of healthy donors, though demonstrate loss of anti-inflammatory and proliferative activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Conraads VM, Bosmans JM, Vrints CJ. Chronic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia. Int J Cardiol. 2002;85(1):33–49.CrossRefPubMed Conraads VM, Bosmans JM, Vrints CJ. Chronic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia. Int J Cardiol. 2002;85(1):33–49.CrossRefPubMed
2.
go back to reference Wust RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis. 2007;2(3):289–300.PubMedPubMedCentral Wust RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis. 2007;2(3):289–300.PubMedPubMedCentral
3.
go back to reference Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. Am J Geriatr Cardiol. 2015;12(3):294–304. Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. Am J Geriatr Cardiol. 2015;12(3):294–304.
4.
go back to reference Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT, Steiner MS. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med. 2011;62:265–79.CrossRefPubMed Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT, Steiner MS. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med. 2011;62:265–79.CrossRefPubMed
5.
go back to reference von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res. 2007;73(2):298–309.CrossRef von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res. 2007;73(2):298–309.CrossRef
6.
go back to reference Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker SD, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):512–9.CrossRefPubMed Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker SD, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):512–9.CrossRefPubMed
7.
go back to reference Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 1992;85(4):1364–73.CrossRefPubMed Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 1992;85(4):1364–73.CrossRefPubMed
8.
go back to reference Lauren Cornall DH, Michael Mathai and Andrew McAinch.: Generation and Use of Cultured Human Primary Myotubes. In: Muscle Biopsy. edn.; 2012: 35-64. Lauren Cornall DH, Michael Mathai and Andrew McAinch.: Generation and Use of Cultured Human Primary Myotubes. In: Muscle Biopsy. edn.; 2012: 35-64.
9.
go back to reference Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol. 2012;798:21–52.CrossRefPubMedPubMedCentral Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol. 2012;798:21–52.CrossRefPubMedPubMedCentral
10.
go back to reference Yablonka-Reuveni Z. Isolation and culture of myogenic stem cells. In: Lanza RBH, Melton D, Moore M, Thomas ED, Verfaillie C, Weissman IL, editors. Handbook of Stem Cells. San Diego: Elsevier, Academic Press; 2004. p. 571–80.CrossRef Yablonka-Reuveni Z. Isolation and culture of myogenic stem cells. In: Lanza RBH, Melton D, Moore M, Thomas ED, Verfaillie C, Weissman IL, editors. Handbook of Stem Cells. San Diego: Elsevier, Academic Press; 2004. p. 571–80.CrossRef
11.
go back to reference Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med. 2010;14(1-2):275–89.CrossRefPubMedPubMedCentral Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med. 2010;14(1-2):275–89.CrossRefPubMedPubMedCentral
12.
go back to reference Berggren JR, Tanner CJ, Houmard JA. Primary cell cultures in the study of human muscle metabolism. Exerc Sport Sci Rev. 2007;35(2):56–61.CrossRefPubMed Berggren JR, Tanner CJ, Houmard JA. Primary cell cultures in the study of human muscle metabolism. Exerc Sport Sci Rev. 2007;35(2):56–61.CrossRefPubMed
13.
go back to reference McAinch AJ, Steinberg GR, Mollica J, O’Brien PE, Dixon JB, Kemp BE, Cameron-Smith D. Leptin stimulation of COXIV is impaired in obese skeletal muscle myotubes. Obesity Res Clin Pract. 2007;1(1):1–78.CrossRef McAinch AJ, Steinberg GR, Mollica J, O’Brien PE, Dixon JB, Kemp BE, Cameron-Smith D. Leptin stimulation of COXIV is impaired in obese skeletal muscle myotubes. Obesity Res Clin Pract. 2007;1(1):1–78.CrossRef
14.
go back to reference Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.CrossRefPubMed Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.CrossRefPubMed
15.
go back to reference Gaster M, Beck-Nielsen H, Schroder HD. Proliferation conditions for human satellite cells. The fractional content of satellite cells. Acta Pathol Microbiol Immunol Scand. 2001;109(11):726–34.CrossRef Gaster M, Beck-Nielsen H, Schroder HD. Proliferation conditions for human satellite cells. The fractional content of satellite cells. Acta Pathol Microbiol Immunol Scand. 2001;109(11):726–34.CrossRef
16.
go back to reference Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Taulli R, Traini S, Baldanzi G, Chianale F, Cutrupi S, et al. Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol Biol Cell. 2007;18(3):986–94.CrossRefPubMedPubMedCentral Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Taulli R, Traini S, Baldanzi G, Chianale F, Cutrupi S, et al. Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol Biol Cell. 2007;18(3):986–94.CrossRefPubMedPubMedCentral
17.
go back to reference Yip DJ, Picketts DJ. Increasing D4Z4 repeat copy number compromises C2C12 myoblast differentiation. FEBS Lett. 2003;537(1-3):133–8.CrossRefPubMed Yip DJ, Picketts DJ. Increasing D4Z4 repeat copy number compromises C2C12 myoblast differentiation. FEBS Lett. 2003;537(1-3):133–8.CrossRefPubMed
18.
go back to reference Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 2012;7(10):e46536.CrossRefPubMedPubMedCentral Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 2012;7(10):e46536.CrossRefPubMedPubMedCentral
19.
go back to reference Berendse M, Grounds MD, Lloyd CM. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res. 2003;291(2):435–50.CrossRefPubMed Berendse M, Grounds MD, Lloyd CM. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res. 2003;291(2):435–50.CrossRefPubMed
20.
go back to reference Pomies P, Rodriguez J, Blaquiere M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Prefaut C, Hayot M. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med. 2015;19(1):175–86.CrossRefPubMedPubMedCentral Pomies P, Rodriguez J, Blaquiere M, Sedraoui S, Gouzi F, Carnac G, Laoudj-Chenivesse D, Mercier J, Prefaut C, Hayot M. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med. 2015;19(1):175–86.CrossRefPubMedPubMedCentral
21.
go back to reference Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M: Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol. Cell. Proteomics 2011, 10(9):M110 006650. Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M: Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol. Cell. Proteomics 2011, 10(9):M110 006650.
22.
go back to reference Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93(4):704–11.CrossRefPubMed Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93(4):704–11.CrossRefPubMed
23.
go back to reference Putko BN, Wang Z, Lo J, Anderson T, Becher H, Dyck JR, Kassiri Z, Oudit GY, Alberta HI. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLoS One. 2014;9(6):e99495.CrossRefPubMedPubMedCentral Putko BN, Wang Z, Lo J, Anderson T, Becher H, Dyck JR, Kassiri Z, Oudit GY, Alberta HI. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLoS One. 2014;9(6):e99495.CrossRefPubMedPubMedCentral
24.
go back to reference Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1–20.CrossRefPubMedPubMedCentral Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1–20.CrossRefPubMedPubMedCentral
25.
go back to reference Mizoguchi E, Mizoguchi A, Takedatsu H, Cario E, de Jong YP, Ooi CJ, Xavier RJ, Terhorst C, Podolsky DK, Bhan AK. Role of tumor necrosis factor receptor 2 (TNFR2) in colonic epithelial hyperplasia and chronic intestinal inflammation in mice. Gastroenterology. 2002;122(1):134–44.CrossRefPubMed Mizoguchi E, Mizoguchi A, Takedatsu H, Cario E, de Jong YP, Ooi CJ, Xavier RJ, Terhorst C, Podolsky DK, Bhan AK. Role of tumor necrosis factor receptor 2 (TNFR2) in colonic epithelial hyperplasia and chronic intestinal inflammation in mice. Gastroenterology. 2002;122(1):134–44.CrossRefPubMed
26.
go back to reference Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One. 2014;9(3):e92363.CrossRefPubMedPubMedCentral Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One. 2014;9(3):e92363.CrossRefPubMedPubMedCentral
27.
go back to reference Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One. 2011;6(3):e17392.CrossRefPubMedPubMedCentral Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One. 2011;6(3):e17392.CrossRefPubMedPubMedCentral
28.
go back to reference Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med. 2014;20(10):1182–6.CrossRefPubMedPubMedCentral Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med. 2014;20(10):1182–6.CrossRefPubMedPubMedCentral
29.
go back to reference Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33–44.CrossRefPubMed Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33–44.CrossRefPubMed
30.
go back to reference Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):861–8.CrossRefPubMed Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):861–8.CrossRefPubMed
31.
go back to reference Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, Rasmussen BB, Volpi E. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95(6):1403–12.CrossRefPubMedPubMedCentral Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, Rasmussen BB, Volpi E. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95(6):1403–12.CrossRefPubMedPubMedCentral
32.
go back to reference Hamilton KE, Simmons JG, Ding S, Van Landeghem L, Lund PK. Cytokine induction of tumor necrosis factor receptor 2 is mediated by STAT3 in colon cancer cells. Mol Cancer Res. 2011;9(12):1718–31.CrossRefPubMedPubMedCentral Hamilton KE, Simmons JG, Ding S, Van Landeghem L, Lund PK. Cytokine induction of tumor necrosis factor receptor 2 is mediated by STAT3 in colon cancer cells. Mol Cancer Res. 2011;9(12):1718–31.CrossRefPubMedPubMedCentral
33.
go back to reference Carty SE, Buresh CM, Norton JA. Decreased IL-6 secretion by fibroblasts following repeated doses of TNF alpha or IL-1 alpha: post-transcriptional gene regulation. J Surg Res. 1991;51(1):24–32.CrossRefPubMed Carty SE, Buresh CM, Norton JA. Decreased IL-6 secretion by fibroblasts following repeated doses of TNF alpha or IL-1 alpha: post-transcriptional gene regulation. J Surg Res. 1991;51(1):24–32.CrossRefPubMed
34.
go back to reference Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306(9):H1364–70.CrossRefPubMedPubMedCentral Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306(9):H1364–70.CrossRefPubMedPubMedCentral
35.
go back to reference Okita K, Kinugawa S, Tsutsui H. Exercise intolerance in chronic heart failure--skeletal muscle dysfunction and potential therapies. Circ J. 2013;77(2):293–300.CrossRefPubMed Okita K, Kinugawa S, Tsutsui H. Exercise intolerance in chronic heart failure--skeletal muscle dysfunction and potential therapies. Circ J. 2013;77(2):293–300.CrossRefPubMed
36.
go back to reference Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, Mayo HG, de Lemos JA, Berry JD. Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis. Circulation. 2015;132(19):1786–94.CrossRefPubMed Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, Mayo HG, de Lemos JA, Berry JD. Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis. Circulation. 2015;132(19):1786–94.CrossRefPubMed
37.
go back to reference Rahman I, Bellavia A, Wolk A, Orsini N. Physical Activity and Heart Failure Risk in a Prospective Study of Men. JACC Heart Failure. 2015;3(9):681–7.CrossRefPubMed Rahman I, Bellavia A, Wolk A, Orsini N. Physical Activity and Heart Failure Risk in a Prospective Study of Men. JACC Heart Failure. 2015;3(9):681–7.CrossRefPubMed
38.
go back to reference Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M. The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch - Eur J Physiol. 2005;451(2):319–27.CrossRef Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M. The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch - Eur J Physiol. 2005;451(2):319–27.CrossRef
39.
go back to reference Snijders T, Verdijk LB, Beelen M, McKay BR, Parise G, Kadi F, van Loon LJ. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp Physiol. 2012;97(6):762–73.CrossRefPubMed Snijders T, Verdijk LB, Beelen M, McKay BR, Parise G, Kadi F, van Loon LJ. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp Physiol. 2012;97(6):762–73.CrossRefPubMed
40.
go back to reference Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8–25.PubMed Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8–25.PubMed
41.
go back to reference Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol-London. 2004;558(3):1005–12.CrossRefPubMedPubMedCentral Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol-London. 2004;558(3):1005–12.CrossRefPubMedPubMedCentral
42.
go back to reference Crameri RM, Langberg H, Magnusson P, Jensen CH, Schroder HD, Olesen JL, Suetta C, Teisner B, Kjaer M. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol-London. 2004;558(1):333–40.CrossRefPubMedPubMedCentral Crameri RM, Langberg H, Magnusson P, Jensen CH, Schroder HD, Olesen JL, Suetta C, Teisner B, Kjaer M. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol-London. 2004;558(1):333–40.CrossRefPubMedPubMedCentral
43.
go back to reference Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R, Py G. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One. 2013;8(2):e57141.CrossRefPubMedPubMedCentral Begue G, Douillard A, Galbes O, Rossano B, Vernus B, Candau R, Py G. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One. 2013;8(2):e57141.CrossRefPubMedPubMedCentral
44.
go back to reference Will K, Kalbe C, Kuzinski J, Losel D, Viergutz T, Palin MF, Rehfeldt C. Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts. Histochem Cell Biol. 2012;138(2):271–87.CrossRefPubMed Will K, Kalbe C, Kuzinski J, Losel D, Viergutz T, Palin MF, Rehfeldt C. Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts. Histochem Cell Biol. 2012;138(2):271–87.CrossRefPubMed
45.
go back to reference Baeza-Raja B, Munoz-Canoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell. 2004;15(4):2013–26.CrossRefPubMedPubMedCentral Baeza-Raja B, Munoz-Canoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell. 2004;15(4):2013–26.CrossRefPubMedPubMedCentral
46.
go back to reference Laustsen PG, Russell SJ, Cui L, Entingh-Pearsall A, Holzenberger M, Liao R, Kahn CR. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. 2007;27(5):1649–64.CrossRefPubMedPubMedCentral Laustsen PG, Russell SJ, Cui L, Entingh-Pearsall A, Holzenberger M, Liao R, Kahn CR. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. 2007;27(5):1649–64.CrossRefPubMedPubMedCentral
47.
go back to reference Machida S, Booth FW. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc. 2004;63(2):337–40.CrossRefPubMed Machida S, Booth FW. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc. 2004;63(2):337–40.CrossRefPubMed
48.
go back to reference Conejo R, Valverde AM, Benito M, Lorenzo M. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities. J Cell Physiol. 2001;186(1):82–94.CrossRefPubMed Conejo R, Valverde AM, Benito M, Lorenzo M. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities. J Cell Physiol. 2001;186(1):82–94.CrossRefPubMed
49.
go back to reference Grabiec K, Gajewska M, Milewska M, Blaszczyk M, Grzelkowska-Kowalczyk K. The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Investig. 2014;37(3):233–45.CrossRef Grabiec K, Gajewska M, Milewska M, Blaszczyk M, Grzelkowska-Kowalczyk K. The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Investig. 2014;37(3):233–45.CrossRef
50.
go back to reference Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard Jr DH, Kull Jr FC, Gonzalez-Cadavid N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab. 2001;280(2):E221–8.PubMed Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard Jr DH, Kull Jr FC, Gonzalez-Cadavid N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab. 2001;280(2):E221–8.PubMed
51.
go back to reference Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 2000;275(51):40235–43.CrossRefPubMed Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 2000;275(51):40235–43.CrossRefPubMed
52.
go back to reference McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003;162(6):1135–47.CrossRefPubMedPubMedCentral McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003;162(6):1135–47.CrossRefPubMedPubMedCentral
53.
go back to reference Baba TT, Nemoto TK, Miyazaki T, Oida S. Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway. J Muscle Res Cell Motil. 2008;29(2-5):127–34.CrossRefPubMed Baba TT, Nemoto TK, Miyazaki T, Oida S. Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway. J Muscle Res Cell Motil. 2008;29(2-5):127–34.CrossRefPubMed
54.
go back to reference Schirris TJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BG, Brandt U, Koopman WJ, Beyrath JD, Rodenburg RJ, et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 2015;22(3):399–407.CrossRefPubMed Schirris TJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BG, Brandt U, Koopman WJ, Beyrath JD, Rodenburg RJ, et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 2015;22(3):399–407.CrossRefPubMed
55.
go back to reference Taha DA, De Moor CH, Barrett DA, Gershkovich P. Translational insight into statin-induced muscle toxicity: from cell culture to clinical studies. Transl Res. 2014;164(2):85–109.CrossRefPubMed Taha DA, De Moor CH, Barrett DA, Gershkovich P. Translational insight into statin-induced muscle toxicity: from cell culture to clinical studies. Transl Res. 2014;164(2):85–109.CrossRefPubMed
56.
go back to reference Parker BA, Thompson PD. Effect of statins on skeletal muscle: exercise, myopathy, and muscle outcomes. Exerc Sport Sci Rev. 2012;40(4):188–94.PubMedPubMedCentral Parker BA, Thompson PD. Effect of statins on skeletal muscle: exercise, myopathy, and muscle outcomes. Exerc Sport Sci Rev. 2012;40(4):188–94.PubMedPubMedCentral
57.
go back to reference Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes. 2002;51(4):921–7.CrossRefPubMed Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes. 2002;51(4):921–7.CrossRefPubMed
58.
go back to reference Zhang L, Wang XH, Wang H, Du J, Mitch WE. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21(3):419–27.CrossRefPubMedPubMedCentral Zhang L, Wang XH, Wang H, Du J, Mitch WE. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21(3):419–27.CrossRefPubMedPubMedCentral
Metadata
Title
Primary skeletal muscle myoblasts from chronic heart failure patients exhibit loss of anti-inflammatory and proliferative activity
Authors
Tahnee Sente
An M. Van Berendoncks
An I. Jonckheere
Richard J. Rodenburg
Patrick Lauwers
Viviane Van Hoof
An Wouters
Filip Lardon
Vicky Y. Hoymans
Christiaan J. Vrints
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2016
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-016-0278-3

Other articles of this Issue 1/2016

BMC Cardiovascular Disorders 1/2016 Go to the issue