Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2016

Open Access 01-12-2016 | Research article

Measurement of pulse wave velocity in normal ageing: comparison of Vicorder and magnetic resonance phase contrast imaging

Authors: Jehill D. Parikh, Kieren G. Hollingsworth, Vijay Kunadian, Andrew Blamire, Guy A. MacGowan

Published in: BMC Cardiovascular Disorders | Issue 1/2016

Login to get access

Abstract

Background

Pulse wave velocity is an important measure of cardiovascular risk, and can be measured by several different techniques. We compared age-related changes in pulse wave velocity derived from carotid and femoral artery waveforms using the Vicorder device and descending thoracic aorta time velocity curves using phase contrast magnetic resonance imaging (MRI) in a group of normal healthy volunteers, without cardiovascular disease, aged between 20 and 79 years.

Methods

Eighty subjects underwent same-day measurements of Vicorder and MRI pulse wave velocity measurements.

Results

Both Vicorder and MRI-based pulse wave velocity measurements were significantly increased with age (R = 0.59 and 0.57 respectively, both P < 0.0001). Vicorder and MRI pulse wave velocities were also significantly related to each other (R = 0.27, P < 0.05), and Bland Altman plots showed that on average Vicorder measurements were 1.6 m/s greater than MRI. In 5 % of cases, agreement between the values of the two techniques were above and below 2 standard deviations, and these were at higher levels of pulse wave velocities. Multiple linear stepwise regression analysis confirmed highly significant relationships of both techniques to age (both P < 0.0001), and MRI was also significantly related to heart rate (P = 0.006) but Vicorder was not.

Conclusions

Both Vicorder and MRI perform similarly in detecting age-related changes in pulse wave velocity. Thus, the choice of using one or the other will depend on other aspects of the investigation, such as the need for portability favouring Vicorder, or need for additional cardiovascular imaging favouring MRI.

Trial registration

ClinicalTrials.Gov identifier NCT01504828 
Literature
1.
go back to reference Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefPubMed Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefPubMed
2.
go back to reference Lin F, Zhu P, Huang F, Li Q, Yuan Y, Gao Z, et al. Aortic stiffness is associated with the central retinal arteriolar equivalent and retinal vascular fractal dimension in a population along the southeastern coast of China. Hypertens Res. 2015;38:342–8.CrossRefPubMed Lin F, Zhu P, Huang F, Li Q, Yuan Y, Gao Z, et al. Aortic stiffness is associated with the central retinal arteriolar equivalent and retinal vascular fractal dimension in a population along the southeastern coast of China. Hypertens Res. 2015;38:342–8.CrossRefPubMed
3.
go back to reference Seidlerová J, Filipovský J, Mayer O, Wohlfahrt P, Cífková R. Positive effects of antihypertensive treatment on aortic stiffness in the general population. Hypertens Res. 2014;37:64–8.CrossRefPubMed Seidlerová J, Filipovský J, Mayer O, Wohlfahrt P, Cífková R. Positive effects of antihypertensive treatment on aortic stiffness in the general population. Hypertens Res. 2014;37:64–8.CrossRefPubMed
4.
go back to reference Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.CrossRefPubMed Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.CrossRefPubMed
5.
go back to reference Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res. 2014;37:999–1007.CrossRefPubMed Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res. 2014;37:999–1007.CrossRefPubMed
6.
go back to reference Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol. 1998;82:203–8.CrossRefPubMed Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol. 1998;82:203–8.CrossRefPubMed
7.
go back to reference Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, et al. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol. 2001;38:1123–9.CrossRefPubMed Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, et al. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol. 2001;38:1123–9.CrossRefPubMed
8.
go back to reference Bossuyt J, Van De Velde S, Azermai M, Vermeersch SJ, De Backer TL, Devos DG, et al. Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours. J Hypertens. 2013;31:946–51.CrossRefPubMed Bossuyt J, Van De Velde S, Azermai M, Vermeersch SJ, De Backer TL, Devos DG, et al. Noninvasive assessment of carotid-femoral pulse wave velocity: the influence of body side and body contours. J Hypertens. 2013;31:946–51.CrossRefPubMed
9.
go back to reference Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, et al. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr. 2004;28:459–68.CrossRefPubMed Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, et al. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr. 2004;28:459–68.CrossRefPubMed
10.
go back to reference Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32:1079–85.CrossRefPubMed Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32:1079–85.CrossRefPubMed
11.
go back to reference McGreevy C, Barry M, Bennett K, Williams D. Repeatability of the measurement of aortic pulse wave velocity (aPWV) in the clinical assessment of arterial stiffness in community-dwelling older patients using the Vicorder® device. Scand J Clin Lab Invest. 2013;73:269–73.CrossRef McGreevy C, Barry M, Bennett K, Williams D. Repeatability of the measurement of aortic pulse wave velocity (aPWV) in the clinical assessment of arterial stiffness in community-dwelling older patients using the Vicorder® device. Scand J Clin Lab Invest. 2013;73:269–73.CrossRef
12.
go back to reference Pucci G, Cheriyan J, Hubsch A, Hickson SS, Gajendragadkar PR, Watson T, et al. Evaluation of the Vicorder, a novel cuff-based device for the noninvasive estimation of central blood pressure. J Hypertens. 2013;31:77–85.CrossRefPubMed Pucci G, Cheriyan J, Hubsch A, Hickson SS, Gajendragadkar PR, Watson T, et al. Evaluation of the Vicorder, a novel cuff-based device for the noninvasive estimation of central blood pressure. J Hypertens. 2013;31:77–85.CrossRefPubMed
13.
go back to reference O’Rourke MF. Influence of ventricular ejection on the relationship between central aortic and brachial pressure pulse in man. Cardiovasc Res. 1970;4:291–300.CrossRefPubMed O’Rourke MF. Influence of ventricular ejection on the relationship between central aortic and brachial pressure pulse in man. Cardiovasc Res. 1970;4:291–300.CrossRefPubMed
14.
go back to reference Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMed Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMed
15.
go back to reference McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol. 1968;24:73–8.PubMed McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol. 1968;24:73–8.PubMed
16.
go back to reference Müller J, Oberhoffer R, Barta C, Hulpke-Wette M, Hager A. Oscillometric carotid to femoral pulse wave velocity estimated with the Vicorder device. J Clin Hypertens (Greenwich). 2013;15:176–9.CrossRef Müller J, Oberhoffer R, Barta C, Hulpke-Wette M, Hager A. Oscillometric carotid to femoral pulse wave velocity estimated with the Vicorder device. J Clin Hypertens (Greenwich). 2013;15:176–9.CrossRef
17.
go back to reference Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM, et al. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging. 2010;3:1247–55.CrossRefPubMed Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM, et al. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging. 2010;3:1247–55.CrossRefPubMed
18.
go back to reference Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefPubMed Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefPubMed
19.
go back to reference Wilkinson IB, Cockcroft JR, McEniery CM. Aortic stiffness as a cardiovascular risk predictor. BMJ. 2015;351:h3764.CrossRefPubMed Wilkinson IB, Cockcroft JR, McEniery CM. Aortic stiffness as a cardiovascular risk predictor. BMJ. 2015;351:h3764.CrossRefPubMed
20.
go back to reference Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.PubMedCentralCrossRefPubMed Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.PubMedCentralCrossRefPubMed
21.
go back to reference Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med. 2002;47:649–54.CrossRefPubMed Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med. 2002;47:649–54.CrossRefPubMed
22.
go back to reference Fielden SW, Fornwalt BK, Jerosch-Herold M, Eisner RL, Stillman AE, Oshinski JN. A new method for the determination of aortic pulse wave velocity using cross-correlation on 2D PCMR velocity data. J Magn Reson Imaging. 2008;27:1382–7.CrossRefPubMed Fielden SW, Fornwalt BK, Jerosch-Herold M, Eisner RL, Stillman AE, Oshinski JN. A new method for the determination of aortic pulse wave velocity using cross-correlation on 2D PCMR velocity data. J Magn Reson Imaging. 2008;27:1382–7.CrossRefPubMed
23.
go back to reference Ibrahim e-SH, Johnson KR, Miller AB, Shaffer JM, White RD. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques. J Cardiovasc Magn Reson. 2010;12:26.PubMedCentralCrossRef Ibrahim e-SH, Johnson KR, Miller AB, Shaffer JM, White RD. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques. J Cardiovasc Magn Reson. 2010;12:26.PubMedCentralCrossRef
24.
go back to reference Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525:263–70.PubMedCentralCrossRefPubMed Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525:263–70.PubMedCentralCrossRefPubMed
Metadata
Title
Measurement of pulse wave velocity in normal ageing: comparison of Vicorder and magnetic resonance phase contrast imaging
Authors
Jehill D. Parikh
Kieren G. Hollingsworth
Vijay Kunadian
Andrew Blamire
Guy A. MacGowan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2016
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-016-0224-4

Other articles of this Issue 1/2016

BMC Cardiovascular Disorders 1/2016 Go to the issue