Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2016

Open Access 01-12-2016 | Research article

Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease

Authors: Jing Liu, Ling Jing, Xilin Tu

Published in: BMC Cardiovascular Disorders | Issue 1/2016

Login to get access

Abstract

Background

The analysis of the potential molecule targets of coronary artery disease (CAD) is critical for understanding the molecular mechanisms of disease. However, studies of global microarray gene co-expression analysis of CAD still remain limited.

Methods

Microarray data of CAD (GSE23561) were downloaded from Gene Expression Omnibus, including peripheral blood samples from CAD patients (n = 6) and controls (n = 9). Limma package in R was used to identify the differentially expressed genes (DEGs) between CAD and control samples. Using weighted gene co-expression network analysis (WGCNA) package in R, WGCNA was performed to identify significant modules in the network. Then, functional and pathway enrichment analyses were conducted for genes in the most significant module using DAVID software. Moreover, hub genes in the module were analyzed by isubpathwayminer package in R and GenCLiP 2.0 tool to identify the significant sub-pathways.

Results

Total 3711 DEGs and 21 modules for them were identified in CAD samples. The most significant module was associated with the pathways of hypertrophic cardiomyopathy and membrane related functions. In addition, the top 30 hub genes with high connectivity in the module were selected, and two genes (G6PD and S100A7) were taken as key molecules via sub-pathway screening and data mining.

Conclusions

A module associated with hypertrophic cardiomyopathy pathway was detected in CAD samples. G6PD and S100A7 were the potential targets in CAD. Our finding might provide novel insight into the underlying molecular mechanism of CAD.
Literature
1.
go back to reference Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: an overview. Circ J. 2013;77:1646–52.CrossRefPubMed Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: an overview. Circ J. 2013;77:1646–52.CrossRefPubMed
2.
go back to reference Hata J, Kiyohara Y. Epidemiology of stroke and coronary artery disease in Asia. Circ J. 2013;77:1923–32.CrossRefPubMed Hata J, Kiyohara Y. Epidemiology of stroke and coronary artery disease in Asia. Circ J. 2013;77:1923–32.CrossRefPubMed
3.
go back to reference Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2013;380:2095–128.CrossRef Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2013;380:2095–128.CrossRef
6.
go back to reference Das S, Yadav D, Narang R, Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci-Bangalore. 2002;83:488–91. Das S, Yadav D, Narang R, Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci-Bangalore. 2002;83:488–91.
7.
go back to reference Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ Cardiovasc Genet. 2011;4:403-12. Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ Cardiovasc Genet. 2011;4:403-12.
8.
go back to reference Kastrup J, Jørgensen E, Fuchs S, Nikol S, Bøtker HE, Gyöngyösi M, et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121. 10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention. 2011;6:813–8.CrossRefPubMed Kastrup J, Jørgensen E, Fuchs S, Nikol S, Bøtker HE, Gyöngyösi M, et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121. 10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention. 2011;6:813–8.CrossRefPubMed
9.
go back to reference Consortium I-RMRA. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214.CrossRef Consortium I-RMRA. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214.CrossRef
10.
go back to reference Chen F, Zhao X, Peng J, Bo L, Fan B, Ma D. Integrated microRNA-mRNA analysis of coronary artery disease. Mol Biol Rep. 2014;41:5505–11.CrossRefPubMed Chen F, Zhao X, Peng J, Bo L, Fan B, Ma D. Integrated microRNA-mRNA analysis of coronary artery disease. Mol Biol Rep. 2014;41:5505–11.CrossRefPubMed
12.
go back to reference Ruan J, Dean AK, Zhang W. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol. 2010;4:8.CrossRefPubMedPubMedCentral Ruan J, Dean AK, Zhang W. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol. 2010;4:8.CrossRefPubMedPubMedCentral
13.
go back to reference Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics. 2013;14:1979–90.CrossRefPubMed Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics. 2013;14:1979–90.CrossRefPubMed
14.
go back to reference Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, et al. Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Sys Biol. 2013;7:S1.CrossRef Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, et al. Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Sys Biol. 2013;7:S1.CrossRef
15.
go back to reference Zhao H, Cai W, Su S, Zhi D, Lu J, Liu S. Screening genes crucial for pediatric pilocytic astrocytoma using weighted gene coexpression network analysis combined with methylation data analysis. Cancer Gene Ther. 2014. Zhao H, Cai W, Su S, Zhi D, Lu J, Liu S. Screening genes crucial for pediatric pilocytic astrocytoma using weighted gene coexpression network analysis combined with methylation data analysis. Cancer Gene Ther. 2014.
16.
go back to reference Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. Genes Immun. 2011;12:341–51.CrossRefPubMedPubMedCentral Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. Genes Immun. 2011;12:341–51.CrossRefPubMedPubMedCentral
17.
go back to reference Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007;35:D760–5.CrossRefPubMedPubMedCentral Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007;35:D760–5.CrossRefPubMedPubMedCentral
18.
go back to reference Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.CrossRefPubMedPubMedCentral Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.CrossRefPubMedPubMedCentral
19.
go back to reference Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.Bioinformatics. 2003;19:185-93. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.Bioinformatics. 2003;19:185-93.
20.
go back to reference Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3 (Article 3). Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3 (Article 3).
21.
go back to reference Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinforma. 2007;8:22.CrossRef Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinforma. 2007;8:22.CrossRef
22.
go back to reference Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.CrossRefPubMed Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.CrossRefPubMed
23.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.CrossRef Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.CrossRef
24.
go back to reference Mason MJ, Fan G, Plath K, Zhou Q, Horvath S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics. 2009;10:327.CrossRefPubMedPubMedCentral Mason MJ, Fan G, Plath K, Zhou Q, Horvath S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics. 2009;10:327.CrossRefPubMedPubMedCentral
25.
go back to reference Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, et al. FlyBase: enhancing Drosophila gene ontology annotations. Nucl Acids Res. 2009;37:D555–D9.CrossRefPubMedPubMedCentral Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, et al. FlyBase: enhancing Drosophila gene ontology annotations. Nucl Acids Res. 2009;37:D555–D9.CrossRefPubMedPubMedCentral
27.
go back to reference Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucl Acids Res. 2007;35:W169–W75.CrossRefPubMedPubMedCentral Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucl Acids Res. 2007;35:W169–W75.CrossRefPubMedPubMedCentral
28.
go back to reference Li C, Li X, Miao Y, Wang Q, Jiang W, et al. SubpathwayMiner: a software package for flexible identification of pathways.Nucleic Acids Res.2009;37:e131-e131 Li C, Li X, Miao Y, Wang Q, Jiang W, et al. SubpathwayMiner: a software package for flexible identification of pathways.Nucleic Acids Res.2009;37:e131-e131
29.
go back to reference Wang JH, Zhao LF, Lin P, Su XR, Chen SJ, Huang LQ, et al. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms.Bioinformatics. 2014;30:2534-6. Wang JH, Zhao LF, Lin P, Su XR, Chen SJ, Huang LQ, et al. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms.Bioinformatics. 2014;30:2534-6.
30.
go back to reference Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:1427–34.CrossRefPubMedPubMedCentral Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:1427–34.CrossRefPubMedPubMedCentral
31.
go back to reference Tan N, Chung MK, Smith JD, Hsu J, Serre D, Newton DW, et al. A Weighted Gene Co-Expression Network Analysis of Human Left Atrial Tissue Identifies Gene Modules Associated withAtrial Fibrillation. Circ Cardiovasc Genet. 2013;6:362-71. Tan N, Chung MK, Smith JD, Hsu J, Serre D, Newton DW, et al. A Weighted Gene Co-Expression Network Analysis of Human Left Atrial Tissue Identifies Gene Modules Associated withAtrial Fibrillation. Circ Cardiovasc Genet. 2013;6:362-71.
32.
go back to reference Sorajja P, Ommen SR, Nishimura RA, Gersh BJ, Berger PB, Tajik AJ. Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation. 2003;108:2342–8.CrossRefPubMed Sorajja P, Ommen SR, Nishimura RA, Gersh BJ, Berger PB, Tajik AJ. Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation. 2003;108:2342–8.CrossRefPubMed
33.
go back to reference Okayama S, Soeda T, Kawakami R, Takami Y, Somekawa S, Ueda T, et al. Evaluation of coronary artery disease and cardiac morphology and function in patients with hypertrophic cardiomyopathy, using cardiac computed tomography. Heart Vessel. 2013;1–8. Okayama S, Soeda T, Kawakami R, Takami Y, Somekawa S, Ueda T, et al. Evaluation of coronary artery disease and cardiac morphology and function in patients with hypertrophic cardiomyopathy, using cardiac computed tomography. Heart Vessel. 2013;1–8.
34.
go back to reference Stover NA, Dixon TA, Cavalcanti AR. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway. PLoS One. 2011;6, e22269.CrossRefPubMedPubMedCentral Stover NA, Dixon TA, Cavalcanti AR. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway. PLoS One. 2011;6, e22269.CrossRefPubMedPubMedCentral
35.
go back to reference Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal. 2013;18:1114–27.CrossRefPubMedPubMedCentral Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal. 2013;18:1114–27.CrossRefPubMedPubMedCentral
36.
go back to reference Serdar Z, Aslan K, Dirican M, Sarandöl E, Yeşilbursa D, Serdar A. Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clin Biochem. 2006;39:794–803.CrossRefPubMed Serdar Z, Aslan K, Dirican M, Sarandöl E, Yeşilbursa D, Serdar A. Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clin Biochem. 2006;39:794–803.CrossRefPubMed
37.
go back to reference Meloni L, Manca M, Loddo I, Cioglia G, Cocco P, Schwartz A, et al. Glucose-6-phosphate dehydrogenase deficiency protects against coronary heart disease. J Inherit Metab Dis. 2008;31:412–7.CrossRefPubMed Meloni L, Manca M, Loddo I, Cioglia G, Cocco P, Schwartz A, et al. Glucose-6-phosphate dehydrogenase deficiency protects against coronary heart disease. J Inherit Metab Dis. 2008;31:412–7.CrossRefPubMed
38.
go back to reference Matsui R, Xu S, Maitland KA, Hayes A, Leopold JA, Handy DE, et al. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Circulation. 2005;112:257–63.CrossRefPubMed Matsui R, Xu S, Maitland KA, Hayes A, Leopold JA, Handy DE, et al. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Circulation. 2005;112:257–63.CrossRefPubMed
39.
go back to reference Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304:H491–500.CrossRefPubMedPubMedCentral Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304:H491–500.CrossRefPubMedPubMedCentral
40.
go back to reference Ata H, Rawat DK, Lincoln T, Gupte SA. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility. Am J Physiol Heart Circ Physiol. 2011;300:H2054–H63.CrossRefPubMedPubMedCentral Ata H, Rawat DK, Lincoln T, Gupte SA. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility. Am J Physiol Heart Circ Physiol. 2011;300:H2054–H63.CrossRefPubMedPubMedCentral
41.
go back to reference Gupte SA, Arshad M, Viola S, Kaminski PM, Ungvari Z, Rabbani G, et al. Pentose phosphate pathway coordinates multiple redox-controlled relaxing mechanisms in bovine coronary arteries. Am J Physiol Heart Circ Physiol. 2003;285:H2316–H26.CrossRefPubMed Gupte SA, Arshad M, Viola S, Kaminski PM, Ungvari Z, Rabbani G, et al. Pentose phosphate pathway coordinates multiple redox-controlled relaxing mechanisms in bovine coronary arteries. Am J Physiol Heart Circ Physiol. 2003;285:H2316–H26.CrossRefPubMed
42.
go back to reference Larsen BT, Gutterman DD. Hypoxia, coronary dilation, and the pentose phosphate pathway. Am J Physiol Heart Circ Physiol. 2006;290:H2169–71.CrossRefPubMed Larsen BT, Gutterman DD. Hypoxia, coronary dilation, and the pentose phosphate pathway. Am J Physiol Heart Circ Physiol. 2006;290:H2169–71.CrossRefPubMed
43.
go back to reference Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2008. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2008.
44.
go back to reference Lee KC, Eckert RL. S100A7 (Psoriasin)–mechanism of antibacterial action in wounds. J Investig Dermatol. 2006;127:945–57.CrossRefPubMed Lee KC, Eckert RL. S100A7 (Psoriasin)–mechanism of antibacterial action in wounds. J Investig Dermatol. 2006;127:945–57.CrossRefPubMed
45.
46.
go back to reference Saito T, Hojo Y. Ogoyama: S100A12 as a marker to predict cardiovascular events in patients with chronic coronary artery disease. Circ J. 2011;76:2647–52.CrossRef Saito T, Hojo Y. Ogoyama: S100A12 as a marker to predict cardiovascular events in patients with chronic coronary artery disease. Circ J. 2011;76:2647–52.CrossRef
Metadata
Title
Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease
Authors
Jing Liu
Ling Jing
Xilin Tu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2016
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-016-0217-3

Other articles of this Issue 1/2016

BMC Cardiovascular Disorders 1/2016 Go to the issue