Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

Performance of gene-expression profiling test score variability to predict future clinical events in heart transplant recipients

Authors: Maria G. Crespo-Leiro, Jörg Stypmann, Uwe Schulz, Andreas Zuckermann, Paul Mohacsi, Christoph Bara, Heather Ross, Jayan Parameshwar, Michal Zakliczyński, Roberto Fiocchi, Daniel Hoefer, Mario Deng, Pascal Leprince, David Hiller, Lane Eubank, Emir Deljkich, James P. Yee, Johan Vanhaecke

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

A single non-invasive gene expression profiling (GEP) test (AlloMap®) is often used to discriminate if a heart transplant recipient is at a low risk of acute cellular rejection at time of testing. In a randomized trial, use of the test (a GEP score from 0–40) has been shown to be non-inferior to a routine endomyocardial biopsy for surveillance after heart transplantation in selected low-risk patients with respect to clinical outcomes. Recently, it was suggested that the within-patient variability of consecutive GEP scores may be used to independently predict future clinical events; however, future studies were recommended. Here we performed an analysis of an independent patient population to determine the prognostic utility of within-patient variability of GEP scores in predicting future clinical events.

Methods

We defined the GEP score variability as the standard deviation of four GEP scores collected ≥315 days post-transplantation. Of the 737 patients from the Cardiac Allograft Rejection Gene Expression Observational (CARGO) II trial, 36 were assigned to the composite event group (death, re-transplantation or graft failure ≥315 days post-transplantation and within 3 years of the final GEP test) and 55 were assigned to the control group (non-event patients). In this case-controlled study, the performance of GEP score variability to predict future events was evaluated by the area under the receiver operator characteristics curve (AUC ROC). The negative predictive values (NPV) and positive predictive values (PPV) including 95 % confidence intervals (CI) of GEP score variability were calculated.

Results

The estimated prevalence of events was 17 %. Events occurred at a median of 391 (inter-quartile range 376) days after the final GEP test. The GEP variability AUC ROC for the prediction of a composite event was 0.72 (95 % CI 0.6-0.8). The NPV for GEP score variability of 0.6 was 97 % (95 % CI 91.4-100.0); the PPV for GEP score variability of 1.5 was 35.4 % (95 % CI 13.5-75.8).

Conclusion

In heart transplant recipients, a GEP score variability may be used to predict the probability that a composite event will occur within 3 years after the last GEP score.

Trial registration

Clinicaltrials.gov identifier NCT00761787
Appendix
Available only for authorised users
Literature
1.
go back to reference Caves PK, Stinson EB, Billingham M, Shumway NE. Percutaneous transvenous endomyocardial biopsy in human heart recipients. Experience with a new technique. Ann Thorac Surg. 1973;16:325–36.CrossRefPubMed Caves PK, Stinson EB, Billingham M, Shumway NE. Percutaneous transvenous endomyocardial biopsy in human heart recipients. Experience with a new technique. Ann Thorac Surg. 1973;16:325–36.CrossRefPubMed
2.
go back to reference Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–53.CrossRefPubMed Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–53.CrossRefPubMed
4.
go back to reference Crespo-Leiro MG, Zuckermann A, Bara C, Mohacsi P, Schulz U, Boyle A, et al. Concordance among pathologists in the second cardiac allograft rejection gene expression observational study (CARGO II). Transplantation. 2012;94:1172–77.CrossRefPubMed Crespo-Leiro MG, Zuckermann A, Bara C, Mohacsi P, Schulz U, Boyle A, et al. Concordance among pathologists in the second cardiac allograft rejection gene expression observational study (CARGO II). Transplantation. 2012;94:1172–77.CrossRefPubMed
5.
go back to reference Mehra MR, Uber PA, Uber WA, Park MH, Scott RL. Anything but a biopsy: noninvasive monitoring for cardiac allograft rejection. Curr Opin Cardiol. 2002;17:131–6.CrossRefPubMed Mehra MR, Uber PA, Uber WA, Park MH, Scott RL. Anything but a biopsy: noninvasive monitoring for cardiac allograft rejection. Curr Opin Cardiol. 2002;17:131–6.CrossRefPubMed
6.
go back to reference Chatterjee K, Anderson M, Heisted D, Kerber RE. Cardiology. 1st ed. Jaypee Brothers Medical Publishers. New Delhi; 2012. p. 485-502. Chatterjee K, Anderson M, Heisted D, Kerber RE. Cardiology. 1st ed. Jaypee Brothers Medical Publishers. New Delhi; 2012. p. 485-502.
7.
go back to reference Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;362:1890–900.CrossRefPubMed Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;362:1890–900.CrossRefPubMed
8.
go back to reference Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant. 2006;6:150–60.CrossRefPubMed Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant. 2006;6:150–60.CrossRefPubMed
9.
go back to reference Deng MC, Alexander G, Wolters H, Shahzad K, Cadeiras M, Hicks A, et al. Low variability of intraindividual longitudinal leukocyte gene expression profiling cardiac allograft rejection scores. Transplantation. 2010;90:459–61.CrossRefPubMed Deng MC, Alexander G, Wolters H, Shahzad K, Cadeiras M, Hicks A, et al. Low variability of intraindividual longitudinal leukocyte gene expression profiling cardiac allograft rejection scores. Transplantation. 2010;90:459–61.CrossRefPubMed
10.
go back to reference Deng MC, Elashoff B, Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, et al. Utility of gene expression profiling score variability to predict clinical events in heart transplant recipients. Transplantation. 2014;97:708–14.PubMedCentralCrossRefPubMed Deng MC, Elashoff B, Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, et al. Utility of gene expression profiling score variability to predict clinical events in heart transplant recipients. Transplantation. 2014;97:708–14.PubMedCentralCrossRefPubMed
11.
go back to reference Kulathinal S, Karvanen J, Saarela O, Kuulasmaa K. Case-cohort design in practice – experience from the MORGAM Project. Epidemiol Perspect Inno. 2007;4:15.CrossRef Kulathinal S, Karvanen J, Saarela O, Kuulasmaa K. Case-cohort design in practice – experience from the MORGAM Project. Epidemiol Perspect Inno. 2007;4:15.CrossRef
12.
go back to reference Austin BA, Arnold PJ, Kao A. The impact of time post cardiac transplant on gene expression profile scores, an analysis of 32,043 tests. J Cardiovasc Dis Diagn. 2013;1:114. Austin BA, Arnold PJ, Kao A. The impact of time post cardiac transplant on gene expression profile scores, an analysis of 32,043 tests. J Cardiovasc Dis Diagn. 2013;1:114.
13.
go back to reference Lampert BC, Teuteberg JJ, Shullo MA, Holtz J, Smith KJ. Cost-effectiveness of routine surveillance endomyocardial biopsy after 12 months post-heart transplantation. Circ Heart Fail. 2014;7:807–13.CrossRefPubMed Lampert BC, Teuteberg JJ, Shullo MA, Holtz J, Smith KJ. Cost-effectiveness of routine surveillance endomyocardial biopsy after 12 months post-heart transplantation. Circ Heart Fail. 2014;7:807–13.CrossRefPubMed
14.
go back to reference Kobashigawa J, Patel J, Azarbal B, Kittleson M, Chang D, Czer L, et al. Randomized pilot trial of gene expression profiling versus heart biopsy in the first year after heart transplant: early invasive monitoring attenuation through gene expression trial. Circ Heart Fail. 2015;8:557–64.CrossRefPubMed Kobashigawa J, Patel J, Azarbal B, Kittleson M, Chang D, Czer L, et al. Randomized pilot trial of gene expression profiling versus heart biopsy in the first year after heart transplant: early invasive monitoring attenuation through gene expression trial. Circ Heart Fail. 2015;8:557–64.CrossRefPubMed
15.
go back to reference Shah MR, Starling RC, Schwartz Longacre L, Mehra MR, Working Group Participants. Heart transplantation research in the next decade--a goal to achieving evidence-based outcomes: National Heart, Lung, And Blood Institute Working Group. J Am Coll Cardiol. 2012;59:1263–9.PubMedCentralCrossRefPubMed Shah MR, Starling RC, Schwartz Longacre L, Mehra MR, Working Group Participants. Heart transplantation research in the next decade--a goal to achieving evidence-based outcomes: National Heart, Lung, And Blood Institute Working Group. J Am Coll Cardiol. 2012;59:1263–9.PubMedCentralCrossRefPubMed
17.
go back to reference Dumville JC, Hahn S, Miles JN, Torgerson DJ. The use of unequal randomization ratio in clinical trials: a review. Contemp Clin Trials. 2006;27:1–12.CrossRefPubMed Dumville JC, Hahn S, Miles JN, Torgerson DJ. The use of unequal randomization ratio in clinical trials: a review. Contemp Clin Trials. 2006;27:1–12.CrossRefPubMed
Metadata
Title
Performance of gene-expression profiling test score variability to predict future clinical events in heart transplant recipients
Authors
Maria G. Crespo-Leiro
Jörg Stypmann
Uwe Schulz
Andreas Zuckermann
Paul Mohacsi
Christoph Bara
Heather Ross
Jayan Parameshwar
Michal Zakliczyński
Roberto Fiocchi
Daniel Hoefer
Mario Deng
Pascal Leprince
David Hiller
Lane Eubank
Emir Deljkich
James P. Yee
Johan Vanhaecke
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0106-1

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue