Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

N-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition

Authors: Cong Liu, Xiao-Zhao Lu, Ming-Zhi Shen, Chang-Yang Xing, Jing Ma, Yun-You Duan, Li-Jun Yuan

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

Diabetic cardiomyopathy is one of the leading causes of death in diabetes mellitus (DM) patients. This study aimed to explore the therapeutic implication of N-acetyl-L-cysteine (NAC, an antioxidant and glutathione precursor) and the possible underlying mechanism.

Methods

Thirty five 12-week-old male C57BL/6 mice were included. Twenty-five diabetic mice were induced by intraperitoneal injection of streptozocin (STZ, 150 mg/kg, Sigma-Aldrich) dissolved in a mix of citrate buffer after overnight fast. Mice with a blood glucose level above 13.5 mmol/L were considered diabetic. As a non-DM (diabetic) control, mice were injected with equal volume of citrate buffer. The 25 diabetic mice were divided into 5 groups with 5 animals in each group: including DM (diabetes without NAC treatment), and 4 different NAC treatment groups, namely NAC1, NAC3, NAC5 and NAC7, with the number defining the start time point of NAC treatment. In the 10 non-DM mice, mice were either untreated (Ctrl) or treated with NAC for 5 weeks (NAC only). Echocardiography was performed 12 weeks after STZ injection. Heart tissue were collected after echocardiography for Hematoxylin Eosin (HE) and Trichrome staining and ROS staining. Cardiac fibroblast cells were isolated, cultured and treated with high glucose plus NAC or the vehicle. qPCR analysis and CCK-8 assay were performed to observe fibrotic gene expression and cell proliferation.

Results

We found that both cardiac systolic function and diastolic function were impaired, coupled with excessive reactive oxygen stress and cardiac fibrosis 12 weeks after STZ induction. NAC significantly reduced ROS generation and fibrosis, together with improved cardiac systolic function and diastolic function. Strikingly, NAC1 treatment, which had the earlier and longer treatment, produced significant improvement of cardiac function and less fibrosis. In the cardiac fibroblasts, NAC blocked cardiac fibroblast proliferation and collagen synthesis induced by hyperglycemia.

Conclusions

Our study indicates that NAC treatment in diabetes effectively protects from diabetic cardiomyopathy, possibly through inhibiting the ROS production and fibrosis, which warrants further clarification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.CrossRefPubMed Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.CrossRefPubMed
2.
go back to reference Rajesh M, Mukhopadhyay P, Batkai S, Mukhopadhyay B, Patel V, Hasko G, et al. Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med. 2009;13(8B):2330–41.CrossRefPubMed Rajesh M, Mukhopadhyay P, Batkai S, Mukhopadhyay B, Patel V, Hasko G, et al. Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med. 2009;13(8B):2330–41.CrossRefPubMed
3.
go back to reference Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflamm. 2011;2011:535241.CrossRef Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflamm. 2011;2011:535241.CrossRef
4.
go back to reference Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87.CrossRefPubMed Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87.CrossRefPubMed
5.
go back to reference Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;47(4):693–700.CrossRefPubMed Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006;47(4):693–700.CrossRefPubMed
6.
go back to reference Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001;37(2):676–85.CrossRefPubMed Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001;37(2):676–85.CrossRefPubMed
7.
go back to reference Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation. 2004;109(3):406–11.CrossRefPubMed Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation. 2004;109(3):406–11.CrossRefPubMed
8.
go back to reference Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. Mol Cell Cardiol. 2004;37(5):959–68.CrossRef Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. Mol Cell Cardiol. 2004;37(5):959–68.CrossRef
9.
go back to reference Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013;123(3):1262–74.CrossRefPubMedPubMedCentral Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013;123(3):1262–74.CrossRefPubMedPubMedCentral
10.
go back to reference Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Research. 2012;2(1):44.CrossRefPubMedPubMedCentral Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Research. 2012;2(1):44.CrossRefPubMedPubMedCentral
11.
go back to reference Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.CrossRefPubMed Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.CrossRefPubMed
12.
go back to reference Du J, Liu J, Feng HZ, Hossain MM, Gobara N, Zhang C, et al. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604–2613.CrossRefPubMedPubMedCentral Du J, Liu J, Feng HZ, Hossain MM, Gobara N, Zhang C, et al. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604–2613.CrossRefPubMedPubMedCentral
13.
go back to reference Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ, et al. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res. 2007;76(2):280–91.CrossRefPubMed Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ, et al. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res. 2007;76(2):280–91.CrossRefPubMed
14.
go back to reference Yong QC, Thomas CM, Seqqat R, Chandel N, Baker KM, Kumar R. Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovasc Diabetol. 2013;12:169.CrossRefPubMedPubMedCentral Yong QC, Thomas CM, Seqqat R, Chandel N, Baker KM, Kumar R. Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovasc Diabetol. 2013;12:169.CrossRefPubMedPubMedCentral
15.
go back to reference Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115(5):584–92.CrossRefPubMed Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115(5):584–92.CrossRefPubMed
16.
go back to reference Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007;293(3):H1883–1891.CrossRefPubMed Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007;293(3):H1883–1891.CrossRefPubMed
17.
go back to reference Xu YJ, Tappia PS, Neki NS, Dhalla NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev. 2014;19(1):113–21.CrossRefPubMed Xu YJ, Tappia PS, Neki NS, Dhalla NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev. 2014;19(1):113–21.CrossRefPubMed
18.
go back to reference Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012;17(3):115–20.PubMedPubMedCentral Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012;17(3):115–20.PubMedPubMedCentral
19.
go back to reference Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.CrossRefPubMed Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.CrossRefPubMed
20.
go back to reference Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):RA141–147.PubMed Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):RA141–147.PubMed
21.
go back to reference Shih CC, Wu YW, Lin WC. Antihyperglycaemic and anti-oxidant properties of Anoectochilus formosanus in diabetic rats. Clin Exp Pharmacol Physiol. 2002;29(8):684–8.CrossRefPubMed Shih CC, Wu YW, Lin WC. Antihyperglycaemic and anti-oxidant properties of Anoectochilus formosanus in diabetic rats. Clin Exp Pharmacol Physiol. 2002;29(8):684–8.CrossRefPubMed
22.
go back to reference Naziroglu M, Butterworth PJ. Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Can J Appl Physiol. 2005;30(2):172–85.CrossRefPubMed Naziroglu M, Butterworth PJ. Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Can J Appl Physiol. 2005;30(2):172–85.CrossRefPubMed
23.
go back to reference Shaw A, Doherty MK, Mutch NJ, MacRury SM, Megson IL. Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications? Biochem Soc Trans. 2014;42(4):928–33.CrossRefPubMed Shaw A, Doherty MK, Mutch NJ, MacRury SM, Megson IL. Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications? Biochem Soc Trans. 2014;42(4):928–33.CrossRefPubMed
24.
go back to reference Sampson N, Koziel R, Zenzmaier C, Bubendorf L, Plas E, Jansen-Durr P, et al. ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol. 2011;25(3):503–15.CrossRefPubMed Sampson N, Koziel R, Zenzmaier C, Bubendorf L, Plas E, Jansen-Durr P, et al. ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol. 2011;25(3):503–15.CrossRefPubMed
Metadata
Title
N-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition
Authors
Cong Liu
Xiao-Zhao Lu
Ming-Zhi Shen
Chang-Yang Xing
Jing Ma
Yun-You Duan
Li-Jun Yuan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0076-3

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue