Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

Diastolic dysfunction in spontaneous type 2 diabetes rhesus monkeys: a study using echocardiography and magnetic resonance imaging

Authors: Can Qian, Li Gong, Zunyuan Yang, Wei Chen, Yushu Chen, Ziqian Xu, Bing Wu, Chungui Tang, Fabao Gao, Wen Zeng

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

Diastolic heart failure is a common and deadly complication of diabetes mellitus, with the development of diabetic cardiomyopathy as one of the key determinants of the disease’s complex pathology. The cause of the association is unknown and has no approved therapy strategies as of yet. However significant advances in this area may come from studies on suitable animal models.

Methods

A total of 25 male rhesus monkeys (12-16 years, 9-13 kg) were enrolled. Fifteen of them were diagnosed as spontaneous type 2 diabetes mellitus (T2DM, FPG ≥ 104 mg/dl, HbA1c: 4.7-5.5 %, diabetes duration: 1-4 years). The other 10 monkeys were non-diabetic (ND, FPG < 90 mg/dl). Echocardiography and cardiac magnetic resonance were used for evaluating the cardiac structure and function. One T2DM monkey with impaired diastolic function and another ND monkey were both sacrificed to gain the necessary pathology and protein expression studies displayed here.

Results

Six out of 15 T2DM rhesus monkeys were diagnosed with diastolic dysfunction (DD) by echocardiography. Additionally, no abnormalities were found in the group which we determined as the ND monkeys. The six DD monkeys all showed low e’ velocity and decreased e’/a’ ratio, among which three of them showing decreased E/A ratio and the other 3 having elevated E/A ratio, this appears to be similar to the impaired relaxation pattern and pseudonormal pattern found in human patients respectively. The EF and FS of monkeys with pseudonormal pattern decreased significantly compared with ND subjects. A CMR study showed that LVID at end systole of 5 DD monkeys is significantly longer than that of 3 ND monkeys. Of great interest, myocardium lesions and mitochondria impairments and increased expression of AGEs and caspase-3 were found in a sacrificed DD subject.

Conclusion

The changes in the imaging and physiological markers of spontaneous T2DM rhesus monkeys are similar to those key markers found in human type 2 diabetes and diastolic dysfunction. This monkey model could help the medical community and us to understand the pathology of this debilitating disease and serve as a beginning to explore important measures to prevent and treat diabetic cardiomyopathy.
Literature
2.
go back to reference Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. Oct 15 2013;62(16):e147-239. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. Oct 15 2013;62(16):e147-239.
3.
go back to reference Tziakas DN, Chalikias GK, Kaski JC. Epidemiology of the diabetic heart. Coron Artery Dis. 2005;16 Suppl 1:S3–s10.PubMedCrossRef Tziakas DN, Chalikias GK, Kaski JC. Epidemiology of the diabetic heart. Coron Artery Dis. 2005;16 Suppl 1:S3–s10.PubMedCrossRef
4.
5.
go back to reference Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.PubMedCrossRef Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.PubMedCrossRef
6.
go back to reference Hayat SA, Patel B, Khattar RS, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci. 2004;107(6):539–58.PubMedCrossRef Hayat SA, Patel B, Khattar RS, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci. 2004;107(6):539–58.PubMedCrossRef
7.
go back to reference Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil J-G. Diastolic Dysfunction in Normotensive Men with Well-Controlled Type 2 Diabetes: Importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care. 2001;24(1):5–10.PubMedCrossRef Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil J-G. Diastolic Dysfunction in Normotensive Men with Well-Controlled Type 2 Diabetes: Importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care. 2001;24(1):5–10.PubMedCrossRef
8.
go back to reference Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87(3):320–3.PubMedCrossRef Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87(3):320–3.PubMedCrossRef
9.
go back to reference Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care. 1994;17(7):633–9.PubMedCrossRef Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care. 1994;17(7):633–9.PubMedCrossRef
10.
go back to reference Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92(7):785–92.PubMedCrossRef Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92(7):785–92.PubMedCrossRef
11.
go back to reference Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium mitochondrial cytochrome c–mediated caspase-3 activation pathway. Diabetes. 2002;51(6):1938–48.PubMedCrossRef Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium mitochondrial cytochrome c–mediated caspase-3 activation pathway. Diabetes. 2002;51(6):1938–48.PubMedCrossRef
12.
13.
go back to reference Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–41.PubMedCrossRef Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–41.PubMedCrossRef
14.
go back to reference Rodrigues B, McNeill JH. Cardiac dysfunction in isolated perfused hearts from spontaneously diabetic BB rats. Can J Physiol Pharmacol. 1990;68(4):514–8.PubMedCrossRef Rodrigues B, McNeill JH. Cardiac dysfunction in isolated perfused hearts from spontaneously diabetic BB rats. Can J Physiol Pharmacol. 1990;68(4):514–8.PubMedCrossRef
15.
go back to reference Loganathan R, Bilgen M, Al-Hafez B, Alenezy MD, Smirnova IV. Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging. Cardiovasc Diabetol. 2006;5(1):7.PubMedPubMedCentralCrossRef Loganathan R, Bilgen M, Al-Hafez B, Alenezy MD, Smirnova IV. Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging. Cardiovasc Diabetol. 2006;5(1):7.PubMedPubMedCentralCrossRef
16.
go back to reference Kralik PM, Ye G, Metreveli NS, Shen X, Epstein PN. Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol. 2005;5(3):285–92.PubMedCrossRef Kralik PM, Ye G, Metreveli NS, Shen X, Epstein PN. Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol. 2005;5(3):285–92.PubMedCrossRef
17.
go back to reference Yu X, Tesiram YA, Towner RA, et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol. 2007;6(1):6.PubMedPubMedCentralCrossRef Yu X, Tesiram YA, Towner RA, et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol. 2007;6(1):6.PubMedPubMedCentralCrossRef
18.
go back to reference Hoit BD, Castro C, Bultron G, Knight S, Matlib MA. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail. 1999;5(4):324–33.PubMedCrossRef Hoit BD, Castro C, Bultron G, Knight S, Matlib MA. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail. 1999;5(4):324–33.PubMedCrossRef
19.
go back to reference Gibbs RA, Rogers J, Katze MG, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–34.PubMedCrossRef Gibbs RA, Rogers J, Katze MG, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–34.PubMedCrossRef
20.
go back to reference Ortmeyer HK, Bodkin N, Hansen BC. Insulin-mediated glycogen synthase activity in muscle of spontaneously insulin-resistant and diabetic rhesus monkeys. Am J Physiol Regul Integr Comp Physiol. 1993;265(3):R552–8. Ortmeyer HK, Bodkin N, Hansen BC. Insulin-mediated glycogen synthase activity in muscle of spontaneously insulin-resistant and diabetic rhesus monkeys. Am J Physiol Regul Integr Comp Physiol. 1993;265(3):R552–8.
21.
go back to reference Hansen B, Bodkin N. Beta-cell hyperresponsiveness: earliest event in development of diabetes in monkeys. Am J Physiol Regul Integr Comp Physiol. 1990;259(3):R612–7. Hansen B, Bodkin N. Beta-cell hyperresponsiveness: earliest event in development of diabetes in monkeys. Am J Physiol Regul Integr Comp Physiol. 1990;259(3):R612–7.
22.
go back to reference Hansen B, Bodkin N. Heterogeneity of insulin responses: phases leading to type 2 (non-insulin-dependent) diabetes mellitus in the rhesus monkey. Diabetologia. 1986;29(10):713–9.PubMedCrossRef Hansen B, Bodkin N. Heterogeneity of insulin responses: phases leading to type 2 (non-insulin-dependent) diabetes mellitus in the rhesus monkey. Diabetologia. 1986;29(10):713–9.PubMedCrossRef
23.
go back to reference Gong L, Zeng W, Yang Z, et al. Comparison of the Clinical Manifestations of Type 2 Diabetes Mellitus Between Rhesus Monkey (Macaca mulatta lasiotis) and Human Being. Pancreas. 2013;42(3):537–42.PubMedCrossRef Gong L, Zeng W, Yang Z, et al. Comparison of the Clinical Manifestations of Type 2 Diabetes Mellitus Between Rhesus Monkey (Macaca mulatta lasiotis) and Human Being. Pancreas. 2013;42(3):537–42.PubMedCrossRef
24.
go back to reference Hansen BC. Investigation and treatment of type 2 diabetes in nonhuman primates. Methods Mol Biol. 2012;933:177–85.PubMed Hansen BC. Investigation and treatment of type 2 diabetes in nonhuman primates. Methods Mol Biol. 2012;933:177–85.PubMed
25.
go back to reference Wagner JD, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ, Kaplan JR. Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J. 2006;47(3):259–71.PubMedCrossRef Wagner JD, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ, Kaplan JR. Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J. 2006;47(3):259–71.PubMedCrossRef
26.
go back to reference Zeng W, Wen X, Gong L, et al. Establishment and ultrasound characteristics of atherosclerosis in rhesus monkey. Biomed Eng Online. 2015;14 Suppl 1:S13.PubMedPubMedCentralCrossRef Zeng W, Wen X, Gong L, et al. Establishment and ultrasound characteristics of atherosclerosis in rhesus monkey. Biomed Eng Online. 2015;14 Suppl 1:S13.PubMedPubMedCentralCrossRef
27.
go back to reference Voutilainen S, Kupari M, Hippelainen M, Karppinen K, Ventila M. Circadian variation of left ventricular diastolic function in healthy people. Heart. 1996;75(1):35–9.PubMedPubMedCentralCrossRef Voutilainen S, Kupari M, Hippelainen M, Karppinen K, Ventila M. Circadian variation of left ventricular diastolic function in healthy people. Heart. 1996;75(1):35–9.PubMedPubMedCentralCrossRef
28.
go back to reference Zeng W, Cheng A-c, Chen Z-l, et al. In vivo assessment of mitochondrial toxicity of metacavir in rhesus monkeys after three months of intravenous administration. Acta Pharmacol Sin. 2009;30(12):1666–73.PubMedPubMedCentralCrossRef Zeng W, Cheng A-c, Chen Z-l, et al. In vivo assessment of mitochondrial toxicity of metacavir in rhesus monkeys after three months of intravenous administration. Acta Pharmacol Sin. 2009;30(12):1666–73.PubMedPubMedCentralCrossRef
29.
go back to reference Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabeticdb/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol. 2002;283(3):H976–82.PubMedCrossRef Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabeticdb/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol. 2002;283(3):H976–82.PubMedCrossRef
30.
go back to reference Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2(6):437–43.PubMedPubMedCentralCrossRef Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2(6):437–43.PubMedPubMedCentralCrossRef
31.
go back to reference Sohn D-W, Chai I-H, Lee D-J, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30(2):474–80.PubMedCrossRef Sohn D-W, Chai I-H, Lee D-J, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30(2):474–80.PubMedCrossRef
32.
go back to reference Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.PubMedCrossRef Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.PubMedCrossRef
33.
go back to reference Hirai J, Ueda K, Takegoshi T, Mabuchi H. Effects of metabolic control on ventricular function in type 2 diabetic patients. Intern Med. 1992;31(6):725–30.PubMedCrossRef Hirai J, Ueda K, Takegoshi T, Mabuchi H. Effects of metabolic control on ventricular function in type 2 diabetic patients. Intern Med. 1992;31(6):725–30.PubMedCrossRef
34.
go back to reference Boyer JK, Thanigaraj S, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870–5.PubMedCrossRef Boyer JK, Thanigaraj S, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870–5.PubMedCrossRef
35.
go back to reference Khan JN, Wilmot EG, Leggate M, et al. Subclinical diastolic dysfunction in young adults with Type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. European Heart Journal Cardiovascular Imaging. Nov 2014;15(11):1263-1269. Khan JN, Wilmot EG, Leggate M, et al. Subclinical diastolic dysfunction in young adults with Type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. European Heart Journal Cardiovascular Imaging. Nov 2014;15(11):1263-1269.
36.
go back to reference Korcarz CE, Padrid PA, Shroff SG, Weinert L, Lang RM. Doppler echocardiographic reference values for healthy rhesus monkeys under ketamine hydrochloride sedation. J Med Primatol. 1997;26(6):287–98.PubMedCrossRef Korcarz CE, Padrid PA, Shroff SG, Weinert L, Lang RM. Doppler echocardiographic reference values for healthy rhesus monkeys under ketamine hydrochloride sedation. J Med Primatol. 1997;26(6):287–98.PubMedCrossRef
37.
go back to reference Tang HL, Wang LL, Cheng G, Wang L, Li S. Evaluation of the cardiovascular function of older adult rhesus monkeys by ultrasonography. J Med Primatol. 2008;37(2):101–8.PubMedCrossRef Tang HL, Wang LL, Cheng G, Wang L, Li S. Evaluation of the cardiovascular function of older adult rhesus monkeys by ultrasonography. J Med Primatol. 2008;37(2):101–8.PubMedCrossRef
38.
go back to reference Sleeper MM, Gaughan JM, Gleason CR, Burkett DE. Echocardiographic reference ranges for sedated healthy cynomolgus monkeys (Macaca fascicularis). Am Assoc Lab Anim Sci. 2008;47(1):22. Sleeper MM, Gaughan JM, Gleason CR, Burkett DE. Echocardiographic reference ranges for sedated healthy cynomolgus monkeys (Macaca fascicularis). Am Assoc Lab Anim Sci. 2008;47(1):22.
39.
go back to reference Keenan CM, Vidal JD. Standard morphologic evaluation of the heart in the laboratory dog and monkey. Toxicol Pathol. 2006;34(1):67–74.PubMedCrossRef Keenan CM, Vidal JD. Standard morphologic evaluation of the heart in the laboratory dog and monkey. Toxicol Pathol. 2006;34(1):67–74.PubMedCrossRef
40.
go back to reference Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol. 2010;48(3):524–9.PubMedCrossRef Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol. 2010;48(3):524–9.PubMedCrossRef
41.
go back to reference Danzmann LC, Bodanese LC, Köhler I, Torres MR. Left atrioventricular remodeling in the assessment of the left ventricle diastolic function in patients with heart failure: a review of the currently studied echocardiographic variables. Cardiovasc Ultrasound. 2008;6(1):56.PubMedPubMedCentralCrossRef Danzmann LC, Bodanese LC, Köhler I, Torres MR. Left atrioventricular remodeling in the assessment of the left ventricle diastolic function in patients with heart failure: a review of the currently studied echocardiographic variables. Cardiovasc Ultrasound. 2008;6(1):56.PubMedPubMedCentralCrossRef
42.
go back to reference Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol. 2006;48(8):1548–51.PubMedCrossRef Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol. 2006;48(8):1548–51.PubMedCrossRef
43.
go back to reference Farias CA, Rodriguez L, Garcia MJ, Sun JP, Klein AL, Thomas JD. Assessment of diastolic function by tissue Doppler echocardiography: comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr. 1999;12(8):609–17.PubMedCrossRef Farias CA, Rodriguez L, Garcia MJ, Sun JP, Klein AL, Thomas JD. Assessment of diastolic function by tissue Doppler echocardiography: comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr. 1999;12(8):609–17.PubMedCrossRef
44.
go back to reference From AM, Scott CG, Chen HH. The Development of Heart Failure in Patients With Diabetes Mellitus and Pre-Clinical Diastolic DysfunctionA Population-Based Study. J Am Coll Cardiol. 2010;55(4):300–5.PubMedCrossRef From AM, Scott CG, Chen HH. The Development of Heart Failure in Patients With Diabetes Mellitus and Pre-Clinical Diastolic DysfunctionA Population-Based Study. J Am Coll Cardiol. 2010;55(4):300–5.PubMedCrossRef
45.
go back to reference Bonito P, Moio N, Cavuto L, et al. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med. 2005;22(12):1720–5.PubMedCrossRef Bonito P, Moio N, Cavuto L, et al. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med. 2005;22(12):1720–5.PubMedCrossRef
46.
go back to reference Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr. 2011;24(11):1268–75. e1261.PubMedCrossRef Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr. 2011;24(11):1268–75. e1261.PubMedCrossRef
47.
go back to reference Sechtem U, Pflugfelder P, Higgins CB. Quantification of cardiac function by conventional and cine magnetic resonance imaging. Cardiovasc Intervent Radiol. 1987;10(6):365–73.PubMedCrossRef Sechtem U, Pflugfelder P, Higgins CB. Quantification of cardiac function by conventional and cine magnetic resonance imaging. Cardiovasc Intervent Radiol. 1987;10(6):365–73.PubMedCrossRef
48.
go back to reference Mihm MJ, Seifert JL, Coyle CM, Bauer JA. Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci. 2001;69(5):527–42.PubMedCrossRef Mihm MJ, Seifert JL, Coyle CM, Bauer JA. Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci. 2001;69(5):527–42.PubMedCrossRef
49.
go back to reference Joffe II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced, non–insulin-dependent diabetic rat: Noninvasive assessment with Doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol. 1999;34(7):2111–9.PubMedCrossRef Joffe II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced, non–insulin-dependent diabetic rat: Noninvasive assessment with Doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol. 1999;34(7):2111–9.PubMedCrossRef
50.
go back to reference Akula A, Kota M, Gopisetty S, et al. Biochemical, histological and echocardiographic changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol Res. 2003;48(5):429–35.PubMedCrossRef Akula A, Kota M, Gopisetty S, et al. Biochemical, histological and echocardiographic changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol Res. 2003;48(5):429–35.PubMedCrossRef
51.
go back to reference Factor SM, Bhan R, Minase T, Wolinsky H, Sonnenblick EH. Hypertensive-diabetic cardiomyopathy in the rat: an experimental model of human disease. Am J Pathol. 1981;102(2):219.PubMedPubMedCentral Factor SM, Bhan R, Minase T, Wolinsky H, Sonnenblick EH. Hypertensive-diabetic cardiomyopathy in the rat: an experimental model of human disease. Am J Pathol. 1981;102(2):219.PubMedPubMedCentral
52.
go back to reference Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J. 1980;99(4):446–58.PubMedCrossRef Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J. 1980;99(4):446–58.PubMedCrossRef
53.
go back to reference Kuethe F, Sigusch H, Bornstein S, Hilbig K, Kamvissi V, Figulla H. Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Horm Metab Res. 2007;39(09):672–6.PubMedCrossRef Kuethe F, Sigusch H, Bornstein S, Hilbig K, Kamvissi V, Figulla H. Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Horm Metab Res. 2007;39(09):672–6.PubMedCrossRef
54.
go back to reference Chung J, Jeong E-M, Go Y, et al. Mitochondria-targeted antioxidant ameliorates diet-induced diabetes and diastolic dysfunction. Journal of the American College of Cardiology. 2013;61(10):E597. Chung J, Jeong E-M, Go Y, et al. Mitochondria-targeted antioxidant ameliorates diet-induced diabetes and diastolic dysfunction. Journal of the American College of Cardiology. 2013;61(10):E597.
55.
go back to reference Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.PubMedCrossRef Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.PubMedCrossRef
Metadata
Title
Diastolic dysfunction in spontaneous type 2 diabetes rhesus monkeys: a study using echocardiography and magnetic resonance imaging
Authors
Can Qian
Li Gong
Zunyuan Yang
Wei Chen
Yushu Chen
Ziqian Xu
Bing Wu
Chungui Tang
Fabao Gao
Wen Zeng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0046-9

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue