Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats

Authors: Zhongshu Liang, Sunnar Leo, Helin Wen, Mao Ouyang, Weihong Jiang, Kan Yang

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

Triptolide treatment leads to an improvement in Diabetic Cardiomyopathy (DCM) in streptozotocin-induced diabetic rat model. DCM is characterized by abnormal cardiac energy metabolism. We hypothesized that triptolide ameliorated cardiac metabolic abnormalities in DCM. We proposed 31P nuclear magnetic resonance (31P NMR) spectrometry method for assessing cardiac energy metabolism in vivo and evaluating the effect of triptolide treatment in DCM rats.

Methods

Six weeks triptolide treatment was conducted on streptozotocin-induced diabetic rats with dose of 100, 200 or 400 μg/kg/day respectively. Sex- and age-matched non-diabetic rats were used as control group. Cardiac chamber dimension and function were determined with echocardiography. Whole heart preparations were perfused with Krebs–Henseleit buffer and 31P NMR spectroscopy was performed. Cardiac p38 Mitogen Activating Protein Kinase (MAPK) was measured using real time PCR and western blot analysis.

Results

In diabetic rats, cardiac mass index was significantly higher, where as cardiac EF was lower than control group. 31P NMR spectroscopy showed that ATP and pCr concentrations in diabetic groups were also remarkably lower than control group. Compared to non-treated diabetic rats, triptolide-treated diabetic groups showed remarkable lower cardiac mass index and higher EF, ATP, pCr concentrations, and P38 MAPK expressions. Best improvement was seen in group treated with Triptolide with dose 200 μg/kg/day.

Conclusions

31P NMR spectroscopy enables assessment of cardiac energy metabolism in whole heart preparations. It detects energy metabolic abnormalities in DCM hearts. Triptolide therapy improves cardiac function and increases cardiac energy metabolism at least partly through upregulation of MAPK signaling transduction.
Literature
1.
go back to reference Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014; in press. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014; in press.
2.
go back to reference Pham T, Loiselle D, Power A, Hickey AJ. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol. 2014; in press. Pham T, Loiselle D, Power A, Hickey AJ. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol. 2014; in press.
3.
go back to reference Mori J, Patel VB, Abo AO, Basu R, Altamimi T, Desaulniers J, et al. Angiotensin 1–7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail. 2014;7(2):327–39.CrossRefPubMed Mori J, Patel VB, Abo AO, Basu R, Altamimi T, Desaulniers J, et al. Angiotensin 1–7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail. 2014;7(2):327–39.CrossRefPubMed
4.
go back to reference Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des. 2013;19(27):4806–17.CrossRefPubMedPubMedCentral Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des. 2013;19(27):4806–17.CrossRefPubMedPubMedCentral
6.
go back to reference Anna Z, Angela S, Barbara B, Jana R, Tamara B, Csilla V, et al. Heart-protective effect of n-3 PUFA demonstrated in a rat model of diabetic cardiomyopathy. Mol Cell Biochem. 2014;389(1–2):219–27.CrossRefPubMed Anna Z, Angela S, Barbara B, Jana R, Tamara B, Csilla V, et al. Heart-protective effect of n-3 PUFA demonstrated in a rat model of diabetic cardiomyopathy. Mol Cell Biochem. 2014;389(1–2):219–27.CrossRefPubMed
7.
go back to reference Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev. 2014;19(1):87–99.CrossRefPubMed Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev. 2014;19(1):87–99.CrossRefPubMed
8.
go back to reference Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012;17(3):115–20.PubMedPubMedCentral Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012;17(3):115–20.PubMedPubMedCentral
9.
go back to reference IS F a, Dick GM, Hollander JM. Diabetes mellitus reduces the function and expression of ATP-dependent K(+) channels in cardiac mitochondria. Life Sci. 2013;92(11):664–8.CrossRef IS F a, Dick GM, Hollander JM. Diabetes mellitus reduces the function and expression of ATP-dependent K(+) channels in cardiac mitochondria. Life Sci. 2013;92(11):664–8.CrossRef
10.
go back to reference Kok BP, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin. 2012;8(4):643–61.CrossRefPubMed Kok BP, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin. 2012;8(4):643–61.CrossRefPubMed
12.
go back to reference Wen HL, Liang ZS, Zhang R, Yang K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2013;12:50.CrossRefPubMedPubMedCentral Wen HL, Liang ZS, Zhang R, Yang K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2013;12:50.CrossRefPubMedPubMedCentral
13.
go back to reference Wei D, Huang Z. Anti-inflammatory effects of triptolide in LPS-induced acute lung injury in mice. Inflammation. 2014; in press. Wei D, Huang Z. Anti-inflammatory effects of triptolide in LPS-induced acute lung injury in mice. Inflammation. 2014; in press.
14.
go back to reference Sai K, Li WY, Chen YS, Wang J, Guan S, Yang QY, et al. Triptolide synergistically enhances temozolomide-induced apoptosis and potentiates inhibition of NF-kappaB signaling in glioma initiating cells. Am J Chin Med. 2014;42(2):485–503.CrossRefPubMed Sai K, Li WY, Chen YS, Wang J, Guan S, Yang QY, et al. Triptolide synergistically enhances temozolomide-induced apoptosis and potentiates inhibition of NF-kappaB signaling in glioma initiating cells. Am J Chin Med. 2014;42(2):485–503.CrossRefPubMed
15.
go back to reference Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014; in press. Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014; in press.
16.
go back to reference Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: Therapeutic perspectives. Pharmacol Ther. 2014;144(2):202–25.CrossRefPubMedPubMedCentral Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: Therapeutic perspectives. Pharmacol Ther. 2014;144(2):202–25.CrossRefPubMedPubMedCentral
17.
go back to reference Lu N, Liu J, Liu J, Zhang C, Jiang F, Wu H, et al. Antagonist effect of triptolide on AKT activation by truncated retinoid X receptor-alpha. Plos One. 2012;7(4), e35722.CrossRefPubMedPubMedCentral Lu N, Liu J, Liu J, Zhang C, Jiang F, Wu H, et al. Antagonist effect of triptolide on AKT activation by truncated retinoid X receptor-alpha. Plos One. 2012;7(4), e35722.CrossRefPubMedPubMedCentral
18.
go back to reference Chmelik M, Považan M, Krššák M, Gruber S, Tkačov M, Trattnig S, et al. In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience. NMR Biomed. 2014;27(4):478–85.CrossRefPubMed Chmelik M, Považan M, Krššák M, Gruber S, Tkačov M, Trattnig S, et al. In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience. NMR Biomed. 2014;27(4):478–85.CrossRefPubMed
19.
go back to reference Zhang CY, Zhang Q, Zhang HM, Yang HS. 3.0T 31P MR Spectroscopy in assessment of response to antiviral therapy for chronic hepatitis c. World J Gastroenterol. 2014;20(8):2107–12.CrossRefPubMedPubMedCentral Zhang CY, Zhang Q, Zhang HM, Yang HS. 3.0T 31P MR Spectroscopy in assessment of response to antiviral therapy for chronic hepatitis c. World J Gastroenterol. 2014;20(8):2107–12.CrossRefPubMedPubMedCentral
20.
go back to reference Banks L, Wells GD, McCrindle BW. Cardiac energy metabolism is positively associated with skeletal muscle energy metabolism in physically active adolescents and young adults. Appl Physiol Nutr Metab. 2014;39(3):363–8.CrossRefPubMed Banks L, Wells GD, McCrindle BW. Cardiac energy metabolism is positively associated with skeletal muscle energy metabolism in physically active adolescents and young adults. Appl Physiol Nutr Metab. 2014;39(3):363–8.CrossRefPubMed
21.
go back to reference Lygate CA, Schneider JE, Neubauer S. Investigating cardiac energetics in heart failure. Exp Physiol. 2013;98(3):601–5.CrossRefPubMed Lygate CA, Schneider JE, Neubauer S. Investigating cardiac energetics in heart failure. Exp Physiol. 2013;98(3):601–5.CrossRefPubMed
22.
go back to reference Read EK, Ivancic M, Hanson P, Cade-Menun BJ, McMahon KD. Phosphorus speciation in a eutrophic lake by P NMR spectroscopy. Water Res. 2014;62C:229–40.CrossRef Read EK, Ivancic M, Hanson P, Cade-Menun BJ, McMahon KD. Phosphorus speciation in a eutrophic lake by P NMR spectroscopy. Water Res. 2014;62C:229–40.CrossRef
23.
go back to reference Willcocks RJ, Fulford J, Armstrong N, Barker AR, Williams CA. Muscle metabolism during fatiguing isometric quadriceps exercise in adolescents and adults. Appl Physiol Nutr Metab. 2014;39(4):439–45.CrossRefPubMed Willcocks RJ, Fulford J, Armstrong N, Barker AR, Williams CA. Muscle metabolism during fatiguing isometric quadriceps exercise in adolescents and adults. Appl Physiol Nutr Metab. 2014;39(4):439–45.CrossRefPubMed
24.
go back to reference Cobert ML, Merritt ME, West LM, Ayers C, Jessen ME, et al. Metabolic characteristics of human hearts preserved for 12 hours by static storage, antegrade perfusion, or retrograde coronary sinus perfusion. J Thorac Cardiovasc Surg. 2014; in press. Cobert ML, Merritt ME, West LM, Ayers C, Jessen ME, et al. Metabolic characteristics of human hearts preserved for 12 hours by static storage, antegrade perfusion, or retrograde coronary sinus perfusion. J Thorac Cardiovasc Surg. 2014; in press.
25.
go back to reference Yaniv Y, Juhaszova M, Nuss HB, Wang S, Zorov DB, Lakatta EG, et al. Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives. Ann N Y Acad Sci. 2010;1188:133–42.CrossRefPubMedPubMedCentral Yaniv Y, Juhaszova M, Nuss HB, Wang S, Zorov DB, Lakatta EG, et al. Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives. Ann N Y Acad Sci. 2010;1188:133–42.CrossRefPubMedPubMedCentral
26.
go back to reference Gao Q, Wang XM, Ye HW, Yu Y, Kang PF, Wang HJ, et al. Changes in the expression of cardiac mitofusin-2 in different stages of diabetes in rats. Mol Med Rep. 2012;6(4):811–4.PubMed Gao Q, Wang XM, Ye HW, Yu Y, Kang PF, Wang HJ, et al. Changes in the expression of cardiac mitofusin-2 in different stages of diabetes in rats. Mol Med Rep. 2012;6(4):811–4.PubMed
27.
go back to reference Uetani T, Yamashita D, Shimizu J, Misawa H, Tatematsu Y, Hamaguchi Y, et al. Heart slice NMR. Am J Physiol Heart Circ Physiol. 2007;292(2):H1181–6.CrossRefPubMed Uetani T, Yamashita D, Shimizu J, Misawa H, Tatematsu Y, Hamaguchi Y, et al. Heart slice NMR. Am J Physiol Heart Circ Physiol. 2007;292(2):H1181–6.CrossRefPubMed
28.
go back to reference Murray AJ, Lygate CA, Cole MA, Carr CA, Radda GK, Neubauer S, et al. Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovasc Res. 2006;71(1):149–57.CrossRefPubMed Murray AJ, Lygate CA, Cole MA, Carr CA, Radda GK, Neubauer S, et al. Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovasc Res. 2006;71(1):149–57.CrossRefPubMed
29.
go back to reference Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, et al. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol. 2014;307(1):H54–65.CrossRefPubMedPubMedCentral Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, et al. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol. 2014;307(1):H54–65.CrossRefPubMedPubMedCentral
30.
go back to reference Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013;288(25):18077–92.CrossRefPubMedPubMedCentral Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013;288(25):18077–92.CrossRefPubMedPubMedCentral
31.
go back to reference Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, et al. Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia. 2012;55(12):3369–81.CrossRefPubMed Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, et al. Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia. 2012;55(12):3369–81.CrossRefPubMed
32.
go back to reference Muller AL, Freed D, Hryshko L, Dhalla NS. Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol. 2012;90(8):995–1004.CrossRefPubMed Muller AL, Freed D, Hryshko L, Dhalla NS. Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol. 2012;90(8):995–1004.CrossRefPubMed
33.
go back to reference Angin Y, Steinbusch LK, Simons PJ, Greulich S, Hoebers NT, Douma K, et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem J. 2012;448(1):43–53.CrossRefPubMed Angin Y, Steinbusch LK, Simons PJ, Greulich S, Hoebers NT, Douma K, et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem J. 2012;448(1):43–53.CrossRefPubMed
34.
go back to reference Atale N, Chakraborty M, Mohanty S, Bhattacharya S, Nigam D, Sharma M, et al. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc Toxicol. 2013;13(3):278–89.CrossRefPubMed Atale N, Chakraborty M, Mohanty S, Bhattacharya S, Nigam D, Sharma M, et al. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc Toxicol. 2013;13(3):278–89.CrossRefPubMed
Metadata
Title
Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats
Authors
Zhongshu Liang
Sunnar Leo
Helin Wen
Mao Ouyang
Weihong Jiang
Kan Yang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0030-4

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue