Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2015

Open Access 01-12-2015 | Research article

Intracoronary epinephrine in the treatment of refractory no-reflow after primary percutaneous coronary intervention: a retrospective study

Authors: Tolga Aksu, Tumer Erdem Guler, Ayse Colak, Erkan Baysal, Mine Durukan, Taner Sen, Umit Guray

Published in: BMC Cardiovascular Disorders | Issue 1/2015

Login to get access

Abstract

Background

Despite the advances in medical and interventional treatment modalities, some patients develop epicardial coronary artery reperfusion but not myocardial reperfusion after primary percutaneous coronary intervention (PCI), known as no-reflow. The goal of this study was to evaluate the safety and efficacy of intracoronary epinephrine in reversing refractory no-reflow during primary PCI.

Methods

A total of 248 consecutive STEMI patients who had undergone primary PCI were retrospectively evaluated. Among those, 12 patients which received intracoronary epinephrine to treat a refractory no-reflow phenomenon were evaluated. Refractory no-reflow was defined as persistent TIMI flow grade (TFG) ≤2 despite intracoronary administration of at least one other pharmacologic intervention. TFG, TIMI frame count (TFC), and TIMI myocardial perfusion grade (TMPG) were recorded before and after intracoronary epinephrine administration.

Results

A mean of 333 ± 123 mcg of intracoronary epinephrine was administered. No-reflow was successfully reversed with complete restoration of TIMI 3 flow in 9 of 12 patients (75%). TFG improved from 1.33 ± 0.49 prior to epinephrine to 2.66 ± 0.65 after the treatment (p < 0.001). There was an improvement in coronary flow of at least one TFG in 11 (93%) patients, two TFG in 5 (42%) cases. TFC decreased from 56 ± 10 at the time of no-reflow to 19 ± 11 (p < 0.001). A reduction of TMPG from 0.83 ± 0.71 to 2.58 ± 0.66 was detected after epinephrine bolus (p < 0.001). Epinephrine administration was well tolerated without serious adverse hemodynamic or chronotropic effects. Intracoronary epinephrine resulted in significant but tolerable increase in heart rate (68 ± 13 to 95 ± 16 beats/min; p < 0.001) and systolic blood pressure (94 ± 18 to 140 ± 20; p < 0.001). Hypotension associated with no-reflow developed in 5 (42%) patients. During the procedure, intra-aortic balloon pump counterpulsation was required in two (17%) patients, transvenous pacing in 2 (17%) cases, and both intra-aortic balloon counterpulsation and transvenous pacing in one (8%) patients. One patient (8%) died despite all therapeutic measures.

Conclusion

Intracoronary epinephrine may become an effective alternative in patients suffering refractory no-reflow following primary PCI.
Literature
1.
go back to reference Tesic MB, Stankovic G, Vukcevic V, Ostojic MC. The use of intracoronary sodium nitroprusside to treat no-reflow after primary percutaneous coronary intervention in acute myocardial infarction. Herz. 2010;35:114–8.CrossRefPubMed Tesic MB, Stankovic G, Vukcevic V, Ostojic MC. The use of intracoronary sodium nitroprusside to treat no-reflow after primary percutaneous coronary intervention in acute myocardial infarction. Herz. 2010;35:114–8.CrossRefPubMed
2.
go back to reference Hong MK, Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, et al. Creatine kinase-MB enzyme elevation following successful saphenous vein graft intervention is associated with late mortality. Circulation. 1999;100:2400–5.CrossRefPubMed Hong MK, Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, et al. Creatine kinase-MB enzyme elevation following successful saphenous vein graft intervention is associated with late mortality. Circulation. 1999;100:2400–5.CrossRefPubMed
3.
go back to reference Lee CH, Tse HF. Microvascular obstruction after percutaneous coronary intervention. Catheter Cardiovasc Interv. 2010;75:369–77.PubMed Lee CH, Tse HF. Microvascular obstruction after percutaneous coronary intervention. Catheter Cardiovasc Interv. 2010;75:369–77.PubMed
4.
go back to reference Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J. 2001;22:729–39.CrossRefPubMed Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J. 2001;22:729–39.CrossRefPubMed
5.
go back to reference Hashimoto K, Hashimoto K. Cardiac irregularities induced by intracoronary injection of epinephrine and acetylcholine into various portions of the canine ventricle. Am Heart J. 1972;83:197–205.CrossRefPubMed Hashimoto K, Hashimoto K. Cardiac irregularities induced by intracoronary injection of epinephrine and acetylcholine into various portions of the canine ventricle. Am Heart J. 1972;83:197–205.CrossRefPubMed
6.
go back to reference Hoffmann BB, Lefkowitz RJ. Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. In: Molinoff PB, Ruddon RW, editors. Goodman and Gilman’s pharmacologic basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 199–248. Hoffmann BB, Lefkowitz RJ. Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. In: Molinoff PB, Ruddon RW, editors. Goodman and Gilman’s pharmacologic basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 199–248.
7.
go back to reference Goto Y, Maeda T, Goto Y. Effects of prehospital epinephrine during out-of-hospital cardiac arrest with initial non-shockable rhythm: an observational cohort study. Crit Care. 2013;17:R188.CrossRefPubMedPubMedCentral Goto Y, Maeda T, Goto Y. Effects of prehospital epinephrine during out-of-hospital cardiac arrest with initial non-shockable rhythm: an observational cohort study. Crit Care. 2013;17:R188.CrossRefPubMedPubMedCentral
8.
go back to reference Skelding KA, Goldstein JA, Mehta L, Pica MC, O'Neill WW. Resolution of refractory no-reflow with intracoronary epinephrine. Catheter Cardiovasc Interv. 2002;57:305–9.CrossRefPubMed Skelding KA, Goldstein JA, Mehta L, Pica MC, O'Neill WW. Resolution of refractory no-reflow with intracoronary epinephrine. Catheter Cardiovasc Interv. 2002;57:305–9.CrossRefPubMed
9.
go back to reference Gottdiener JS, Bednarz J, Devereux R. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.PubMed Gottdiener JS, Bednarz J, Devereux R. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.PubMed
10.
go back to reference Schiller NB, Shah PM, Crawford M. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2:358–67.CrossRefPubMed Schiller NB, Shah PM, Crawford M. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2:358–67.CrossRefPubMed
11.
go back to reference Van’t Hof AW, Liem A, Suryapranata H, Hoorntje JC, De Boer MJ, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction myocardial blush grade. Zwolle Myocardial Infarction Study Group Circulation. 1998;97:2302–6. Van’t Hof AW, Liem A, Suryapranata H, Hoorntje JC, De Boer MJ, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction myocardial blush grade. Zwolle Myocardial Infarction Study Group Circulation. 1998;97:2302–6.
12.
go back to reference Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM, Kugelmass AD, et al. Incidence and treatment of 'no-reflow' after percutaneous coronary intervention. Circulation. 1994;89:2514–8.CrossRefPubMed Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM, Kugelmass AD, et al. Incidence and treatment of 'no-reflow' after percutaneous coronary intervention. Circulation. 1994;89:2514–8.CrossRefPubMed
13.
go back to reference Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2008;72:950–7.CrossRefPubMed Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2008;72:950–7.CrossRefPubMed
14.
go back to reference Zhou H, He XY, Zhuang SW, Wang J, Lai Y, Qi WG, et al. Clinical and procedural predictors of no-reflow in patients with acute myocardial infarction after primary percutaneous coronary intervention. World J Emerg Med. 2014;5:96–102.CrossRefPubMedPubMedCentral Zhou H, He XY, Zhuang SW, Wang J, Lai Y, Qi WG, et al. Clinical and procedural predictors of no-reflow in patients with acute myocardial infarction after primary percutaneous coronary intervention. World J Emerg Med. 2014;5:96–102.CrossRefPubMedPubMedCentral
15.
go back to reference de Lemos JA, Antman EM, Gibson CM, McCabe CH, Giugliano RP, Murphy SA, et al. Abciximab improves both epicardial flow and myocardial reperfusion in ST-elevation myocardial infarction. Observations from the TIMI 14 trial. Circulation. 2000;101:239–43.CrossRefPubMed de Lemos JA, Antman EM, Gibson CM, McCabe CH, Giugliano RP, Murphy SA, et al. Abciximab improves both epicardial flow and myocardial reperfusion in ST-elevation myocardial infarction. Observations from the TIMI 14 trial. Circulation. 2000;101:239–43.CrossRefPubMed
16.
go back to reference Wohrle J, Grebe OC, Nusser T, Al-Khayer E, Schaible S, Kochs M, et al. Reduction of major adverse cardiac events with intracoronary compared with intravenous bolus application of abciximab in patients with acute myocardial infarction or unstable angina undergoing coronary angioplasty. Circulation. 2003;107:1840–3.CrossRefPubMed Wohrle J, Grebe OC, Nusser T, Al-Khayer E, Schaible S, Kochs M, et al. Reduction of major adverse cardiac events with intracoronary compared with intravenous bolus application of abciximab in patients with acute myocardial infarction or unstable angina undergoing coronary angioplasty. Circulation. 2003;107:1840–3.CrossRefPubMed
17.
go back to reference Zeymer U, Zahn R, Schiele R, Jansen W, Girth E, Gitt A, et al. Early eptifibatide improves TIMI 3 patency before primary percutaneous coronary intervention for acute ST elevation myocardial infarction: Results of randomized integrilin in acute myocardial infarction (INTAMI) pilot trial. Eur Heart J. 2005;26:1971–7.CrossRefPubMed Zeymer U, Zahn R, Schiele R, Jansen W, Girth E, Gitt A, et al. Early eptifibatide improves TIMI 3 patency before primary percutaneous coronary intervention for acute ST elevation myocardial infarction: Results of randomized integrilin in acute myocardial infarction (INTAMI) pilot trial. Eur Heart J. 2005;26:1971–7.CrossRefPubMed
18.
go back to reference Saito T, Hokimoto S, Ishibashi F, Noda K, Oshima S. Pulse infusion thrombolysis (PIT) for large intracoronary thrombus: preventive effect against the 'no flow' phenomenon in revascularization therapy for acute myocardial infarction. Jpn Circ J. 2001;65:94–8.CrossRefPubMed Saito T, Hokimoto S, Ishibashi F, Noda K, Oshima S. Pulse infusion thrombolysis (PIT) for large intracoronary thrombus: preventive effect against the 'no flow' phenomenon in revascularization therapy for acute myocardial infarction. Jpn Circ J. 2001;65:94–8.CrossRefPubMed
19.
go back to reference Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27:2400–5.CrossRefPubMed Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27:2400–5.CrossRefPubMed
20.
go back to reference Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: potential mechanisms. Circulation. 1995;92:1117–25.CrossRefPubMed Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: potential mechanisms. Circulation. 1995;92:1117–25.CrossRefPubMed
21.
go back to reference Nijveldt R, Hofman MB, Hirsch A, Beek AM, Umans VA, Algra PR, et al. Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology. 2009;250:363–70.CrossRefPubMed Nijveldt R, Hofman MB, Hirsch A, Beek AM, Umans VA, Algra PR, et al. Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology. 2009;250:363–70.CrossRefPubMed
22.
go back to reference Pernet K, Ecarnot F, Chopard R, Seronde MF, Plastaras P, Schiele F, et al. Microvascular obstruction assessed by 3-tesla magnetic resonance imaging in acute myocardial infarction is correlated with plasma troponin I levels. BMC Cardiovasc Disord. 2014;30:14–57. Pernet K, Ecarnot F, Chopard R, Seronde MF, Plastaras P, Schiele F, et al. Microvascular obstruction assessed by 3-tesla magnetic resonance imaging in acute myocardial infarction is correlated with plasma troponin I levels. BMC Cardiovasc Disord. 2014;30:14–57.
Metadata
Title
Intracoronary epinephrine in the treatment of refractory no-reflow after primary percutaneous coronary intervention: a retrospective study
Authors
Tolga Aksu
Tumer Erdem Guler
Ayse Colak
Erkan Baysal
Mine Durukan
Taner Sen
Umit Guray
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2015
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-015-0004-6

Other articles of this Issue 1/2015

BMC Cardiovascular Disorders 1/2015 Go to the issue