Skip to main content
Top
Published in: BMC Anesthesiology 1/2015

Open Access 01-12-2015 | Research article

Preferential effects of low volume versus high volume replacement with crystalloid fluid in a hemorrhagic shock model in pigs

Authors: Martin Ponschab, Herbert Schöchl, Claudia Keibl, Henrik Fischer, Heinz Redl, Christoph J. Schlimp

Published in: BMC Anesthesiology | Issue 1/2015

Login to get access

Abstract

Background

Fluid resuscitation is a core stone of hemorrhagic shock therapy, and crystalloid fluids seem to be associated with lower mortality compared to colloids. However, as redistribution starts within minutes, it has been suggested to replace blood loss with a minimum of a three-fold amount of crystalloids. The hypothesis was that in comparison to high volume (HV), a lower crystalloid volume (LV) achieves a favorable coagulation profile and exerts sufficient haemodynamics in the acute phase of resuscitation.

Methods

In 24 anaesthetized pigs, controlled arterial blood loss of 50 % of the estimated blood volume was either (n = 12) replaced with a LV (one-fold) or a HV (three-fold) volume of a balanced, acetated crystalloid solution at room temperature. Hemodynamic parameters, dilution effects and coagulation profile by standard coagulation tests and thromboelastometry at baseline and after resuscitation were determined in both groups.

Results

LV resuscitation increased MAP significantly less compared to the HV, 61 ± 7 vs. 82 ± 14 mmHg (p < 0.001) respectively, with no difference between lactate and base excess between groups. Haematocrit after fluid replacement was 0.20 vs. 0.16 (LV vs. HV, p < 0.001), suggesting a grade of blood dilution of 32 vs. 42 % (p < 0.001) compared to baseline values. Compared to LV, HV resulted in decreased core temperature (37.5 ± 0.2 vs. 36.0 ± 0.6 °C, p < 0.001), lower platelet count (318 ± 77 vs. 231 ± 53 K/μL, p < 0.01) and lower plasma fibrinogen levels (205 ± 19 vs. 168 ± 24 mg/dL, p < 0.001). Thromboelastometric measurements showed a significant impairment on viscoelastic clot properties following HV group. While prothrombin time index decreased significantly more in the HV group, activated partial thromboplastin time did not differ between both groups. HV did not result in hyperchloraemic acidosis.

Discussion

Coagulation parameters represented by plasma fibrinogen and ROTEM parameters were also less impaired with LV. With regrad to hematocrit, 60 % of LV remained intracascular , while in HV only 30 % remained in circulation within the first hour of administration. In the acute setting of 50 % controlled blood loss, a one fold LV crystalloid replacement strategy is sufficient to adequately raise blood pressure up to a mean arterial pressure >50 mm Hg. The concept of damage control resuscitation (DCR) with permissive hypotension may be better met by using LV as compared to a three fold HV resuscitation strategy.

Conclusion

High volume administration of an acetated balanced crystalloid does not lead to hyperchloraemic acidosis, but may negatively influence clinical parameters, such as higher blood pressure, lower body temperature and impaired coagulation parameters, which could potentially increase bleeding after trauma. Replacement of acute blood loss with just an equal amount of an acetated balanced crystalloid appears to be the preferential treatment strategy in the acute phase after controlled bleeding.
Literature
1.
go back to reference Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party. Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus. 2011;9:189.PubMedCentralPubMed Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party. Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus. 2011;9:189.PubMedCentralPubMed
2.
go back to reference Roberts I, Evans P, Bunn F, Kwan I, Crowhurst E. Is the normalisation of blood pressure in bleeding trauma patients harmful? Lancet. 2001;357:385.CrossRefPubMed Roberts I, Evans P, Bunn F, Kwan I, Crowhurst E. Is the normalisation of blood pressure in bleeding trauma patients harmful? Lancet. 2001;357:385.CrossRefPubMed
3.
go back to reference Perel P, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2012;6:CD000567.PubMed Perel P, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2012;6:CD000567.PubMed
4.
go back to reference Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27:200.CrossRefPubMed Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27:200.CrossRefPubMed
5.
go back to reference Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30:270.CrossRefPubMed Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30:270.CrossRefPubMed
6.
go back to reference Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.PubMedCentralCrossRefPubMed Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.PubMedCentralCrossRefPubMed
7.
go back to reference European Resuscitation Council. European trauma course. Course manual. 1st ed. 2010. European Resuscitation Council. European trauma course. Course manual. 1st ed. 2010.
8.
go back to reference American College of Surgeons Committee on Trauma. ATLS ® student manual. 9th ed. Chicago, IL: American College of Surgeons; 2012. American College of Surgeons Committee on Trauma. ATLS ® student manual. 9th ed. Chicago, IL: American College of Surgeons; 2012.
9.
go back to reference Rehm M, Finsterer U. Treating intraoperative hyperchloremic acidosis with sodium bicarbonate or tris-hydroxymethyl aminomethane: a randomized prospective study. Anesth Analg. 2003;96:1201.CrossRefPubMed Rehm M, Finsterer U. Treating intraoperative hyperchloremic acidosis with sodium bicarbonate or tris-hydroxymethyl aminomethane: a randomized prospective study. Anesth Analg. 2003;96:1201.CrossRefPubMed
10.
go back to reference Kermode JC, Zheng Q, Milner EP. Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood. 1999;94:199.PubMed Kermode JC, Zheng Q, Milner EP. Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood. 1999;94:199.PubMed
11.
go back to reference Meng ZH, Wolberg AS, Monroe DM, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55:886.CrossRefPubMed Meng ZH, Wolberg AS, Monroe DM, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55:886.CrossRefPubMed
12.
go back to reference McIlroy DR, Kharasch ED. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg. 2003;96:1572.CrossRefPubMed McIlroy DR, Kharasch ED. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg. 2003;96:1572.CrossRefPubMed
13.
go back to reference Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20 %: a prospective study in humans. Crit Care. 2012;16:R86.PubMedCentralCrossRefPubMed Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20 %: a prospective study in humans. Crit Care. 2012;16:R86.PubMedCentralCrossRefPubMed
14.
go back to reference Drummond JC, Petrovitch CT. Intraoperative blood salvage: fluid replacement calculations. Anesth Analg. 2005;100:645.CrossRefPubMed Drummond JC, Petrovitch CT. Intraoperative blood salvage: fluid replacement calculations. Anesth Analg. 2005;100:645.CrossRefPubMed
15.
go back to reference Brauer KI, Svensén C, Hahn RG, Traber LD, Prough DS. Volume kinetic analysis of the distribution of 0.9 % saline in conscious versus isoflurane-anesthetized sheep. Anesthesiology. 2002;96:442.CrossRefPubMed Brauer KI, Svensén C, Hahn RG, Traber LD, Prough DS. Volume kinetic analysis of the distribution of 0.9 % saline in conscious versus isoflurane-anesthetized sheep. Anesthesiology. 2002;96:442.CrossRefPubMed
16.
go back to reference Gries A, Sikinger M, Hainer C, Ganion N, Petersen G, Bernhard M, et al. Time in care of trauma patients in the air rescue service: implications for disposition? Anaesthesist. 2008;57:562–70.CrossRefPubMed Gries A, Sikinger M, Hainer C, Ganion N, Petersen G, Bernhard M, et al. Time in care of trauma patients in the air rescue service: implications for disposition? Anaesthesist. 2008;57:562–70.CrossRefPubMed
17.
go back to reference Dekker SE, Sillesen M, Bambakidis T, Jin G, Liu B, Boer C, et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 2014;156:556–63.CrossRefPubMed Dekker SE, Sillesen M, Bambakidis T, Jin G, Liu B, Boer C, et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 2014;156:556–63.CrossRefPubMed
18.
go back to reference Sillesen M, Jin G, Johansson PI, Alam HB. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock. Scand J Trauma Resusc Emerg Med. 2014;22:46.PubMedCentralCrossRefPubMed Sillesen M, Jin G, Johansson PI, Alam HB. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock. Scand J Trauma Resusc Emerg Med. 2014;22:46.PubMedCentralCrossRefPubMed
19.
go back to reference Rowland MR, Ragina NP, Sarkar J, Uyehara CF, Senagore AJ. Is arginine/asymetric dimethylarginine ratio depletion an indicator of insufficient resuscitation in a porcine model of hemorrhage-reperfusion? Surgery. 2014;156:861–8.CrossRefPubMed Rowland MR, Ragina NP, Sarkar J, Uyehara CF, Senagore AJ. Is arginine/asymetric dimethylarginine ratio depletion an indicator of insufficient resuscitation in a porcine model of hemorrhage-reperfusion? Surgery. 2014;156:861–8.CrossRefPubMed
20.
go back to reference Schlimp CJ, Solomon C, Hochleitner G, Zipperle J, Redl H, Schöchl H. Thromboelastometric maximum clot firmness in platelet-free plasma is influenced by the assay used. Anesth Analg. 2013;117:23.CrossRefPubMed Schlimp CJ, Solomon C, Hochleitner G, Zipperle J, Redl H, Schöchl H. Thromboelastometric maximum clot firmness in platelet-free plasma is influenced by the assay used. Anesth Analg. 2013;117:23.CrossRefPubMed
21.
go back to reference Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81:360.PubMed Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81:360.PubMed
22.
go back to reference Dünser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17:326.PubMedCentralCrossRefPubMed Dünser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17:326.PubMedCentralCrossRefPubMed
23.
go back to reference White NJ, Martin EJ, Brophy DF, Ward KR. Coagulopathy and traumatic shock: characterizing hemostatic function during the critical period prior to fluid resuscitation. Resuscitation. 2010;81:111.PubMedCentralCrossRefPubMed White NJ, Martin EJ, Brophy DF, Ward KR. Coagulopathy and traumatic shock: characterizing hemostatic function during the critical period prior to fluid resuscitation. Resuscitation. 2010;81:111.PubMedCentralCrossRefPubMed
24.
go back to reference Duan K, Yu W, Lin Z, Tan S, Bai X, Xu L, et al. A time course study of acute traumatic coagulopathy prior to resuscitation: from hypercoagulation to hypocoagulation caused by hypoperfusion? Transfus Apher Sci. 2014;50:399.CrossRefPubMed Duan K, Yu W, Lin Z, Tan S, Bai X, Xu L, et al. A time course study of acute traumatic coagulopathy prior to resuscitation: from hypercoagulation to hypocoagulation caused by hypoperfusion? Transfus Apher Sci. 2014;50:399.CrossRefPubMed
25.
go back to reference Davis JS, Alsafran S, Richie CD, Moore JW, Namias N, Schulman CI. Time to resuscitate a sacred cow…with normal saline. Am Surg. 2014;80:301.PubMed Davis JS, Alsafran S, Richie CD, Moore JW, Namias N, Schulman CI. Time to resuscitate a sacred cow…with normal saline. Am Surg. 2014;80:301.PubMed
27.
go back to reference Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259:255.CrossRefPubMed Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259:255.CrossRefPubMed
28.
go back to reference Story DA, Morimatsu H, Bellomo R. Hyperchloremic acidosis in the critically ill: one of the strong-ion acidoses? Anesth Analg. 2006;103:144.CrossRefPubMed Story DA, Morimatsu H, Bellomo R. Hyperchloremic acidosis in the critically ill: one of the strong-ion acidoses? Anesth Analg. 2006;103:144.CrossRefPubMed
29.
go back to reference Schöchl H, Grassetto A, Schlimp CJ. Management of hemorrhage in trauma. J Cardiothorac Vasc Anesth. 2013;27 Suppl 4:S35–43.CrossRefPubMed Schöchl H, Grassetto A, Schlimp CJ. Management of hemorrhage in trauma. J Cardiothorac Vasc Anesth. 2013;27 Suppl 4:S35–43.CrossRefPubMed
30.
go back to reference Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70:652.CrossRefPubMed Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70:652.CrossRefPubMed
31.
go back to reference Weiss G, Lison S, Spannagl M, Heindl B. Expressiveness of global coagulation parameters in dilutional coagulopathy. Br J Anaesth. 2010;105:429.CrossRefPubMed Weiss G, Lison S, Spannagl M, Heindl B. Expressiveness of global coagulation parameters in dilutional coagulopathy. Br J Anaesth. 2010;105:429.CrossRefPubMed
32.
go back to reference Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748.CrossRefPubMed Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748.CrossRefPubMed
33.
go back to reference Chambers LA, Chow SJ, Shaffer LE. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am J Clin Pathol. 2011;136:364–70.CrossRefPubMed Chambers LA, Chow SJ, Shaffer LE. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am J Clin Pathol. 2011;136:364–70.CrossRefPubMed
34.
go back to reference Hagemo JS, Stanworth S, Juffermans NP, Brohi K, Cohen M, Johansson PI, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care. 2014;18(2):R52.PubMedCentralCrossRefPubMed Hagemo JS, Stanworth S, Juffermans NP, Brohi K, Cohen M, Johansson PI, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care. 2014;18(2):R52.PubMedCentralCrossRefPubMed
35.
go back to reference Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255:379–85.PubMedCentralCrossRefPubMed Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255:379–85.PubMedCentralCrossRefPubMed
36.
go back to reference Ponschab M, Schöchl H, Gabriel C, Süssner S, Cadamuro J, Haschke-Becher E, et al. Haemostatic profile of reconstituted blood in a proposed 1:1:1 ratio of packed red blood cells, platelet concentrate and four different plasma preparations. Anaesthesia. 2015;70:528–36.CrossRefPubMed Ponschab M, Schöchl H, Gabriel C, Süssner S, Cadamuro J, Haschke-Becher E, et al. Haemostatic profile of reconstituted blood in a proposed 1:1:1 ratio of packed red blood cells, platelet concentrate and four different plasma preparations. Anaesthesia. 2015;70:528–36.CrossRefPubMed
37.
go back to reference Khan S, Davenport R, Raza I, Glasgow S, De’Ath HD, Johansson PI, et al. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015;41:239–47.CrossRefPubMed Khan S, Davenport R, Raza I, Glasgow S, De’Ath HD, Johansson PI, et al. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015;41:239–47.CrossRefPubMed
38.
go back to reference Schlimp CJ, Cadamuro J, Solomon C, Redl H, Schochl H. The effect of fibrinogen concentrate and factor XIII on thromboelastometry in 33 % diluted blood with albumin, gelatine, hydroxyethyl starch or saline in vitro. Blood Transfus. 2013;11:510.PubMedCentralPubMed Schlimp CJ, Cadamuro J, Solomon C, Redl H, Schochl H. The effect of fibrinogen concentrate and factor XIII on thromboelastometry in 33 % diluted blood with albumin, gelatine, hydroxyethyl starch or saline in vitro. Blood Transfus. 2013;11:510.PubMedCentralPubMed
39.
40.
go back to reference Ruttmann TG, Jamest MF, Lombard EH. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to pre-dilution concentrations. Anaesth Intensive Care. 2001;29:489.PubMed Ruttmann TG, Jamest MF, Lombard EH. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to pre-dilution concentrations. Anaesth Intensive Care. 2001;29:489.PubMed
41.
go back to reference Moore HB, Moore EE, Gonzalez E, Hansen KC, Dzieciatkowska M, Chapman MP, et al. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock. 2015;43:39.PubMedCentralCrossRefPubMed Moore HB, Moore EE, Gonzalez E, Hansen KC, Dzieciatkowska M, Chapman MP, et al. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock. 2015;43:39.PubMedCentralCrossRefPubMed
42.
go back to reference Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost. 2011;9:2251.PubMedCentralCrossRefPubMed Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost. 2011;9:2251.PubMedCentralCrossRefPubMed
43.
go back to reference Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896.CrossRefPubMed Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896.CrossRefPubMed
Metadata
Title
Preferential effects of low volume versus high volume replacement with crystalloid fluid in a hemorrhagic shock model in pigs
Authors
Martin Ponschab
Herbert Schöchl
Claudia Keibl
Henrik Fischer
Heinz Redl
Christoph J. Schlimp
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2015
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-015-0114-9

Other articles of this Issue 1/2015

BMC Anesthesiology 1/2015 Go to the issue