Skip to main content
Top
Published in: BMC Immunology 1/2021

Open Access 01-12-2021 | Human Immunodeficiency Virus | Research

Innate lymphoid cell dysfunction during long-term suppressive antiretroviral therapy in an African cohort

Authors: Rose Nabatanzi, Lois Bayigga, Stephen Cose, Glenda Canderan, Sarah Rowland Jones, Moses Joloba, Damalie Nakanjako

Published in: BMC Immunology | Issue 1/2021

Login to get access

Abstract

Background

Innate lymphoid cells (ILC) are lymphoid lineage innate immune cells that do not mount antigen-specific responses due to their lack of B and T-cell receptors. ILCs are predominantly found at mucosal surfaces, as gatekeepers against invading infectious agents through rapid secretion of immune regulatory cytokines. HIV associated destruction of mucosal lymphoid tissue depletes ILCs, among other immune dysfunctions. Studies have described limited restoration of ILCs during the first three years of combined antiretroviral therapy (cART). Little is known about restoration of ILCs during long-term cART, particularly in sub-Saharan Africa which hosts increasing numbers of adults with at least a decade of cART.

Results

We examined phenotypes and function of ILCs from peripheral blood mononuclear cells after 12 years of suppressive cART. We report that ILC1 frequencies (T-BET + CD127 + and CD161 +) were higher in cART-treated HIV-infected relative to age-matched health HIV-negative adults; P = 0.04 whereas ILC precursors (ILCP) were comparable in the two groups (P = 0.56). Interferon gamma (IFN-γ) secretion by ILC1 was higher among cART-treated HIV-infected relative to HIV-negative adults (P = 0.03).

Conclusion

HIV associated alteration of ILC persisted during cART and may likely affect the quality of host innate and adaptive immune responses during long-term cART.
Appendix
Available only for authorised users
Literature
1.
go back to reference Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells—how did we miss them? Nat Rev Immunol. 2013;13(2):75–87.CrossRef Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells—how did we miss them? Nat Rev Immunol. 2013;13(2):75–87.CrossRef
2.
go back to reference Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9. CrossRef Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9. CrossRef
3.
go back to reference Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells: A new paradigm in immunology. Science. 2015;348(6237):aaa6566.CrossRef Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells: A new paradigm in immunology. Science. 2015;348(6237):aaa6566.CrossRef
4.
go back to reference Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.CrossRef Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.CrossRef
5.
go back to reference Seillet C, Belz GT, Huntington ND. Development, homeostasis, and heterogeneity of NK cells and ILC1. In: Vivier E, Di Santo J, Moretta A, editors. Natural killer cells. Berlin: Springer; 2015. p. 37–61.CrossRef Seillet C, Belz GT, Huntington ND. Development, homeostasis, and heterogeneity of NK cells and ILC1. In: Vivier E, Di Santo J, Moretta A, editors. Natural killer cells. Berlin: Springer; 2015. p. 37–61.CrossRef
6.
go back to reference Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.CrossRef Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.CrossRef
7.
go back to reference Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T H 2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells. Nature. 2010;463(7280):540.CrossRef Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T H 2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells. Nature. 2010;463(7280):540.CrossRef
8.
go back to reference Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity. 2014;40(3):378–88.CrossRef Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity. 2014;40(3):378–88.CrossRef
9.
go back to reference Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12(1):21.CrossRef Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12(1):21.CrossRef
10.
go back to reference Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 2016;37(1):68–79.CrossRef Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 2016;37(1):68–79.CrossRef
11.
go back to reference Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21(7):698.CrossRef Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21(7):698.CrossRef
12.
go back to reference McKenzie AN, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014;41(3):366–74.CrossRef McKenzie AN, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014;41(3):366–74.CrossRef
13.
go back to reference Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38(4):769–81.CrossRef Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38(4):769–81.CrossRef
14.
go back to reference Steinke JW, Borish L. Th2 cytokines and asthma—Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66.CrossRef Steinke JW, Borish L. Th2 cytokines and asthma—Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66.CrossRef
15.
go back to reference Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367.CrossRef Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367.CrossRef
16.
go back to reference Ardain A. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;570:528–32.CrossRef Ardain A. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;570:528–32.CrossRef
17.
go back to reference Eberl G. Development and evolution of RORγt+ cells in a microbe’s world. Immunol Rev. 2012;245(1):177–88.CrossRef Eberl G. Development and evolution of RORγt+ cells in a microbe’s world. Immunol Rev. 2012;245(1):177–88.CrossRef
18.
go back to reference Maizels RM, Withers DR. MHC-II: a mutual support system for ILCs and T cells? Immunity. 2014;41(2):174–6.CrossRef Maizels RM, Withers DR. MHC-II: a mutual support system for ILCs and T cells? Immunity. 2014;41(2):174–6.CrossRef
19.
go back to reference Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113.CrossRef Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113.CrossRef
20.
go back to reference Dillon SM, Frank DN, Wilson CC. The gut microbiome and HIV-1 pathogenesis: a two way street. AIDS. 2016;30(18):2737.CrossRef Dillon SM, Frank DN, Wilson CC. The gut microbiome and HIV-1 pathogenesis: a two way street. AIDS. 2016;30(18):2737.CrossRef
21.
go back to reference Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.CrossRef Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.CrossRef
22.
go back to reference Mudd JC, Brenchley JM. Innate lymphoid cells: their contributions to gastrointestinal tissue homeostasis and HIV/SIV disease pathology. Curr HIV/AIDS Rep. 2019;16:181–90.CrossRef Mudd JC, Brenchley JM. Innate lymphoid cells: their contributions to gastrointestinal tissue homeostasis and HIV/SIV disease pathology. Curr HIV/AIDS Rep. 2019;16:181–90.CrossRef
23.
go back to reference Kløverpris HN, Noorbhai A, Kuhn W, Yadon M, Ramsuran D, Nhamoyebonde S, et al. Innate lymphoid cells are depleted in HIV infection. AIDS Res Hum Retroviruses. 2014;30(S1):A14.CrossRef Kløverpris HN, Noorbhai A, Kuhn W, Yadon M, Ramsuran D, Nhamoyebonde S, et al. Innate lymphoid cells are depleted in HIV infection. AIDS Res Hum Retroviruses. 2014;30(S1):A14.CrossRef
24.
go back to reference Kløverpris HN, Kazer SW, Mjösberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.CrossRef Kløverpris HN, Kazer SW, Mjösberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.CrossRef
31.
go back to reference Le Moing V, Thiebaut R, Chene G, Leport C, Cailleton V, Michelet C, et al. Predictors of long-term increase in CD4(+) cell counts in human immunodeficiency virus-infected patients receiving a protease inhibitor-containing antiretroviral regimen. J Infect Dis. 2002;185(4):471–80. https://doi.org/10.1086/338929.CrossRefPubMed Le Moing V, Thiebaut R, Chene G, Leport C, Cailleton V, Michelet C, et al. Predictors of long-term increase in CD4(+) cell counts in human immunodeficiency virus-infected patients receiving a protease inhibitor-containing antiretroviral regimen. J Infect Dis. 2002;185(4):471–80. https://​doi.​org/​10.​1086/​338929.CrossRefPubMed
32.
go back to reference Nabatanzi R, Bayigga L, Ssinabulya I, Kiragga A, Kambugu A, Olobo J, et al. Low antigen-specific CD4 T-cell immune responses despite normal absolute CD4 counts after long-term antiretroviral therapy an African cohort. Immunol Lett. 2014;162(2):264–72.CrossRef Nabatanzi R, Bayigga L, Ssinabulya I, Kiragga A, Kambugu A, Olobo J, et al. Low antigen-specific CD4 T-cell immune responses despite normal absolute CD4 counts after long-term antiretroviral therapy an African cohort. Immunol Lett. 2014;162(2):264–72.CrossRef
36.
go back to reference Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek M, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12(4):320.CrossRef Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek M, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12(4):320.CrossRef
42.
go back to reference Mehandru S. The gastrointestinal tract in HIV-1 infection: questions, answers, and more questions. PRN Noteb. 2007;12:1–10. Mehandru S. The gastrointestinal tract in HIV-1 infection: questions, answers, and more questions. PRN Noteb. 2007;12:1–10.
43.
go back to reference Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5(6):646.CrossRef Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012;5(6):646.CrossRef
44.
go back to reference Li H, Richert-Spuhler LE, Evans TI, Gillis J, Connole M, Estes JD, et al. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection. PLoS Pathog. 2014;10(12):e1004551.CrossRef Li H, Richert-Spuhler LE, Evans TI, Gillis J, Connole M, Estes JD, et al. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection. PLoS Pathog. 2014;10(12):e1004551.CrossRef
45.
go back to reference Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, Bemelman WA, Diefenbach A, Blom B, Spits H. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43:146–60.CrossRef Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, Bemelman WA, Diefenbach A, Blom B, Spits H. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43:146–60.CrossRef
47.
go back to reference Baroncelli S, Galluzzo CM, Pirillo MF, Mancini MG, Weimer LE, Andreotti M, et al. Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with< 50 copies/ml HIV-1 RNA. J Clin Virol. 2009;46(4):367–70.CrossRef Baroncelli S, Galluzzo CM, Pirillo MF, Mancini MG, Weimer LE, Andreotti M, et al. Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with< 50 copies/ml HIV-1 RNA. J Clin Virol. 2009;46(4):367–70.CrossRef
48.
go back to reference Palmisano L, Giuliano M, Nicastri E, Pirillo MF, Andreotti M, Galluzzo CM, et al. Residual viraemia in subjects with chronic HIV infection and viral load< 50 copies/ml: the impact of highly active antiretroviral therapy. AIDS. 2005;19(16):1843–7.CrossRef Palmisano L, Giuliano M, Nicastri E, Pirillo MF, Andreotti M, Galluzzo CM, et al. Residual viraemia in subjects with chronic HIV infection and viral load< 50 copies/ml: the impact of highly active antiretroviral therapy. AIDS. 2005;19(16):1843–7.CrossRef
49.
go back to reference Nabatanzi R, Bayigga L, Cose S, Rowland Jones S, Joloba M, Canderan G, et al. Monocyte dysfunction, activation and inflammation after long-term antiretroviral therapy in an African cohort. J Infect Dis. 2019;220:1414–9.CrossRef Nabatanzi R, Bayigga L, Cose S, Rowland Jones S, Joloba M, Canderan G, et al. Monocyte dysfunction, activation and inflammation after long-term antiretroviral therapy in an African cohort. J Infect Dis. 2019;220:1414–9.CrossRef
50.
go back to reference Krämer B, Goeser F, Lutz P, Glässner A, Boesecke C, Schwarze-Zander C, et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 2017;13(5):e1006373.CrossRef Krämer B, Goeser F, Lutz P, Glässner A, Boesecke C, Schwarze-Zander C, et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 2017;13(5):e1006373.CrossRef
51.
go back to reference Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6− RORγt+ innate lymphoid cells. Nature. 2013;494(7436):261.CrossRef Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6− RORγt+ innate lymphoid cells. Nature. 2013;494(7436):261.CrossRef
52.
go back to reference Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.CrossRef Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.CrossRef
53.
go back to reference Klose CS, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–56.CrossRef Klose CS, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–56.CrossRef
54.
go back to reference Reynders A, Yessaad N, Manh TPV, Dalod M, Fenis A, Aubry C, et al. Identity, regulation and in vivo function of gut NKp46+ RORγt+ and NKp46+ RORγt− lymphoid cells. EMBO J. 2011;30(14):2934–47.CrossRef Reynders A, Yessaad N, Manh TPV, Dalod M, Fenis A, Aubry C, et al. Identity, regulation and in vivo function of gut NKp46+ RORγt+ and NKp46+ RORγt− lymphoid cells. EMBO J. 2011;30(14):2934–47.CrossRef
55.
go back to reference Rönnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25(2):248–53.CrossRef Rönnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25(2):248–53.CrossRef
56.
go back to reference Lugada ES, Mermin J, Kaharuza F, Ulvestad E, Were W, Langeland N, et al. Population-based hematologic and immunologic reference values for a healthy Ugandan population. Clin Diagn Lab Immunol. 2004;11(1):29–34.PubMedPubMedCentral Lugada ES, Mermin J, Kaharuza F, Ulvestad E, Were W, Langeland N, et al. Population-based hematologic and immunologic reference values for a healthy Ugandan population. Clin Diagn Lab Immunol. 2004;11(1):29–34.PubMedPubMedCentral
Metadata
Title
Innate lymphoid cell dysfunction during long-term suppressive antiretroviral therapy in an African cohort
Authors
Rose Nabatanzi
Lois Bayigga
Stephen Cose
Glenda Canderan
Sarah Rowland Jones
Moses Joloba
Damalie Nakanjako
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2021
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-021-00450-8

Other articles of this Issue 1/2021

BMC Immunology 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.