Skip to main content
Top
Published in: BMC Immunology 1/2018

Open Access 01-12-2018 | Research article

Cattle infection response network and its functional modules

Authors: Hamid Beiki, Abbas Pakdel, Ardeshir Nejati Javaremi, Ali Masoudi-Nejad, James M. Reecy

Published in: BMC Immunology | Issue 1/2018

Login to get access

Abstract

Background

Weighted Gene Co-expression Network analysis, a powerful technique used to extract co-expressed gene pattern from mRNA expression data, was constructed to infer common immune strategies used by cattle in response to five different bacterial species (Escherichia coli, Mycobacterium avium, Mycobacterium bovis, Salmonella and Staphylococcus aureus) and a protozoa (Trypanosoma Congolense) using 604 publicly available gene expression microarrays from 12 cattle infection experiments.

Results

A total of 14,999 transcripts that were differentially expressed (DE) in at least three different infection experiments were consolidated into 15 modules that contained between 43 and 4441 transcripts. The high number of shared DE transcripts between the different types of infections indicated that there were potentially common immune strategies used in response to these infections. The number of transcripts in the identified modules varied in response to different infections. Fourteen modules showed a strong functional enrichment for specific GO/pathway terms related to “immune system process” (71%), “metabolic process” (71%), “growth and developmental process” (64%) and “signaling pathways” (50%), which demonstrated the close interconnection between these biological pathways in response to different infections. The largest module in the network had several over-represented GO/pathway terms related to different aspects of lipid metabolism and genes in this module were down-regulated for the most part during various infections. Significant negative correlations between this module’s eigengene values, three immune related modules in the network, and close interconnection between their hub genes, might indicate the potential co-regulation of these modules during different infections in bovine. In addition, the potential function of 93 genes with no functional annotation was inferred based on neighbor analysis and functional uniformity among associated genes. Several hypothetical genes were differentially expressed during experimental infections, which might indicate their important role in cattle response to different infections.

Conclusions

We identified several biological pathways involved in immune response to different infections in cattle. These findings provide rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on immune response to different infections in cattle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science (New York, NY). 2009;324(5926):522–8.CrossRef Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science (New York, NY). 2009;324(5926):522–8.CrossRef
2.
go back to reference Donovan DM, Kerr DE, Wall RJ. Engineering disease resistant cattle. Transgenic Res. 2005;14(5):563–7.CrossRefPubMed Donovan DM, Kerr DE, Wall RJ. Engineering disease resistant cattle. Transgenic Res. 2005;14(5):563–7.CrossRefPubMed
3.
go back to reference Habing GG, Manning S, Bolin C, Cui Y, Rudrik J, Dietrich S, Kaneene JB. Within-farm changes in dairy farm-associated salmonella subtypes and comparison to human clinical isolates in Michigan, 2000-2001 and 2009. Appl Environ Microbiol. 2015;81(17):5724–35.CrossRefPubMedPubMedCentral Habing GG, Manning S, Bolin C, Cui Y, Rudrik J, Dietrich S, Kaneene JB. Within-farm changes in dairy farm-associated salmonella subtypes and comparison to human clinical isolates in Michigan, 2000-2001 and 2009. Appl Environ Microbiol. 2015;81(17):5724–35.CrossRefPubMedPubMedCentral
4.
go back to reference Coustou V, Guegan F, Plazolles N, Baltz T. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Negl Trop Dis. 2010;4(3):e618.CrossRefPubMedPubMedCentral Coustou V, Guegan F, Plazolles N, Baltz T. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Negl Trop Dis. 2010;4(3):e618.CrossRefPubMedPubMedCentral
5.
go back to reference Courtin D, Berthier D, Thevenon S, Dayo GK, Garcia A, Bucheton B. Host genetics in African trypanosomiasis. Infect Genet Evol. 2008;8(3):229–38.CrossRefPubMed Courtin D, Berthier D, Thevenon S, Dayo GK, Garcia A, Bucheton B. Host genetics in African trypanosomiasis. Infect Genet Evol. 2008;8(3):229–38.CrossRefPubMed
6.
go back to reference Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, Blum H, Seyfert HM. Comparative kinetics of Escherichia Coli- and Staphylococcus Aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. Aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect Immun. 2011;79(2):695–707.CrossRefPubMed Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, Blum H, Seyfert HM. Comparative kinetics of Escherichia Coli- and Staphylococcus Aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. Aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect Immun. 2011;79(2):695–707.CrossRefPubMed
7.
go back to reference Osorio AL, Madruga CR, Desquesnes M, Soares CO, Ribeiro LR, Costa SC. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the new world--a review. Memorias do Instituto Oswaldo Cruz. 2008;103(1):1–13.CrossRefPubMed Osorio AL, Madruga CR, Desquesnes M, Soares CO, Ribeiro LR, Costa SC. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the new world--a review. Memorias do Instituto Oswaldo Cruz. 2008;103(1):1–13.CrossRefPubMed
8.
go back to reference Giamarellos-Bourboulis EJ, Raftogiannis M. The immune response to severe bacterial infections: consequences for therapy. Expert Rev Anti-Infect Ther. 2012;10(3):369–80.CrossRefPubMed Giamarellos-Bourboulis EJ, Raftogiannis M. The immune response to severe bacterial infections: consequences for therapy. Expert Rev Anti-Infect Ther. 2012;10(3):369–80.CrossRefPubMed
9.
go back to reference Haines LR, Lehane SM, Pearson TW, Lehane MJ. Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog. 2010;6(3):e1000793.CrossRefPubMedPubMedCentral Haines LR, Lehane SM, Pearson TW, Lehane MJ. Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog. 2010;6(3):e1000793.CrossRefPubMedPubMedCentral
10.
go back to reference Kianmehr Z, Kaboudanian Ardestani S, Soleimanjahi H, Fotouhi F, Alamian S, Ahmadian S. Comparison of biological and immunological characterization of Lipopolysaccharides from Brucella abortus RB51 and S19. Jundishapur J Microbiol. 2015;8(11):e24853.CrossRefPubMedPubMedCentral Kianmehr Z, Kaboudanian Ardestani S, Soleimanjahi H, Fotouhi F, Alamian S, Ahmadian S. Comparison of biological and immunological characterization of Lipopolysaccharides from Brucella abortus RB51 and S19. Jundishapur J Microbiol. 2015;8(11):e24853.CrossRefPubMedPubMedCentral
11.
go back to reference Amrine KC, Blanco-Ulate B, Cantu D. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis. PLoS One. 2015;10(3):e0118731.CrossRefPubMedPubMedCentral Amrine KC, Blanco-Ulate B, Cantu D. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis. PLoS One. 2015;10(3):e0118731.CrossRefPubMedPubMedCentral
12.
go back to reference Tully JP, Hill AE, Ahmed HM, Whitley R, Skjellum A, Mukhtar MS. Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics. 2014;15:421.CrossRefPubMedPubMedCentral Tully JP, Hill AE, Ahmed HM, Whitley R, Skjellum A, Mukhtar MS. Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics. 2014;15:421.CrossRefPubMedPubMedCentral
13.
go back to reference Windram O, Denby KJ. Modelling signaling networks underlying plant defence. Curr Opin Plant Biol. 2015;27:165–71.CrossRefPubMed Windram O, Denby KJ. Modelling signaling networks underlying plant defence. Curr Opin Plant Biol. 2015;27:165–71.CrossRefPubMed
15.
go back to reference Eichmann R, Schafer P. Growth versus immunity--a redirection of the cell cycle? Curr Opin Plant Biol. 2015;26:106–12.CrossRefPubMed Eichmann R, Schafer P. Growth versus immunity--a redirection of the cell cycle? Curr Opin Plant Biol. 2015;26:106–12.CrossRefPubMed
16.
go back to reference DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. The immune response attenuates growth and nutrient storage in drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A. 2009;106(49):20853–8.CrossRefPubMedPubMedCentral DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. The immune response attenuates growth and nutrient storage in drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A. 2009;106(49):20853–8.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Brown JK. A cost of disease resistance: paradigm or peculiarity? Trends in Genet. 2003;19(12):667–71.CrossRef Brown JK. A cost of disease resistance: paradigm or peculiarity? Trends in Genet. 2003;19(12):667–71.CrossRef
19.
go back to reference Heil M, Baldwin IT. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 2002;7(2):61–7.CrossRefPubMed Heil M, Baldwin IT. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 2002;7(2):61–7.CrossRefPubMed
20.
go back to reference Bolton MD. Primary metabolism and plant defense--fuel for the fire. Mol Plant Microbe Interact. 2009;22(5):487–97.CrossRefPubMed Bolton MD. Primary metabolism and plant defense--fuel for the fire. Mol Plant Microbe Interact. 2009;22(5):487–97.CrossRefPubMed
21.
go back to reference Kleessen S, Laitinen R, Fusari CM, Antonio C, Sulpice R, Fernie AR, Stitt M, Nikoloski Z. Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis Thaliana. Nat Commun. 2014;5:3537.CrossRefPubMed Kleessen S, Laitinen R, Fusari CM, Antonio C, Sulpice R, Fernie AR, Stitt M, Nikoloski Z. Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis Thaliana. Nat Commun. 2014;5:3537.CrossRefPubMed
23.
go back to reference Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M, Osborne TF. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011;13(5):540–9.CrossRefPubMedPubMedCentral Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M, Osborne TF. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011;13(5):540–9.CrossRefPubMedPubMedCentral
24.
go back to reference Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes Aegypti. J Biol Chem. 2006;281(13):8426–35.CrossRefPubMed Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes Aegypti. J Biol Chem. 2006;281(13):8426–35.CrossRefPubMed
25.
go back to reference Varga T, Nagy L. Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferator-activated receptor gamma. Eur J Clin Investig. 2008;38(10):695–707.CrossRef Varga T, Nagy L. Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferator-activated receptor gamma. Eur J Clin Investig. 2008;38(10):695–707.CrossRef
26.
go back to reference Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics. 2015;16:177.CrossRefPubMedPubMedCentral Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics. 2015;16:177.CrossRefPubMedPubMedCentral
27.
go back to reference Thompson CB. Rethinking the regulation of cellular metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:23–9.CrossRefPubMed Thompson CB. Rethinking the regulation of cellular metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:23–9.CrossRefPubMed
28.
go back to reference van Raam BJ, Sluiter W, de Wit E, Roos D, Verhoeven AJ, Kuijpers TW. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One. 2008;3(4):e2013.CrossRefPubMedPubMedCentral van Raam BJ, Sluiter W, de Wit E, Roos D, Verhoeven AJ, Kuijpers TW. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One. 2008;3(4):e2013.CrossRefPubMedPubMedCentral
29.
go back to reference Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008;112(4):935–45.CrossRefPubMed Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008;112(4):935–45.CrossRefPubMed
30.
go back to reference Koberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol. 2016;39:28–36.CrossRefPubMed Koberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol. 2016;39:28–36.CrossRefPubMed
31.
go back to reference Guo J, Liu Z, Sun H, Huang Y, Albrecht E, Zhao R, Yang X. Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs. Lipids Health Dis. 2015;14:68.CrossRefPubMedPubMedCentral Guo J, Liu Z, Sun H, Huang Y, Albrecht E, Zhao R, Yang X. Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs. Lipids Health Dis. 2015;14:68.CrossRefPubMedPubMedCentral
32.
go back to reference Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.CrossRefPubMed Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.CrossRefPubMed
33.
go back to reference Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus Aureus skin infection. Science (New York, NY). 2015;347(6217):67–71.CrossRef Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus Aureus skin infection. Science (New York, NY). 2015;347(6217):67–71.CrossRef
34.
go back to reference Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol. 2014;16(10):1484–92.CrossRefPubMed Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol. 2014;16(10):1484–92.CrossRefPubMed
36.
go back to reference Beiki H, Nejati-Javaremi A, Pakdel A, Masoudi-Nejad A, Z-L H, Reecy JM. Large-scale gene co-expression network as a source of functional annotation for cattle genes. BMC Genomics. 2016;17(1):846.CrossRefPubMedPubMedCentral Beiki H, Nejati-Javaremi A, Pakdel A, Masoudi-Nejad A, Z-L H, Reecy JM. Large-scale gene co-expression network as a source of functional annotation for cattle genes. BMC Genomics. 2016;17(1):846.CrossRefPubMedPubMedCentral
37.
go back to reference Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C. The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res. 2015;43(Database issue):D1057–63.CrossRefPubMed Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C. The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res. 2015;43(Database issue):D1057–63.CrossRefPubMed
39.
40.
go back to reference Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005;83(2):106–18.CrossRefPubMed Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005;83(2):106–18.CrossRefPubMed
41.
go back to reference Wu G, Meininger CJ. Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr. 2002;22:61–86.CrossRefPubMed Wu G, Meininger CJ. Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr. 2002;22:61–86.CrossRefPubMed
42.
go back to reference Ha EM, CT O, Bae YS, Lee WJ. A direct role for dual oxidase in drosophila gut immunity. Science (New York, NY). 2005;310(5749):847–50.CrossRef Ha EM, CT O, Bae YS, Lee WJ. A direct role for dual oxidase in drosophila gut immunity. Science (New York, NY). 2005;310(5749):847–50.CrossRef
43.
go back to reference Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (New York, NY). 2005;310(5749):850–5.CrossRef Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (New York, NY). 2005;310(5749):850–5.CrossRef
44.
go back to reference Wu Z, Cui Q, Yethiraj A. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations. J Phys Chem B. 2013;117(40):12145–56.CrossRefPubMed Wu Z, Cui Q, Yethiraj A. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations. J Phys Chem B. 2013;117(40):12145–56.CrossRefPubMed
45.
go back to reference Wang H, Chen H, Hao G, Yang B, Feng Y, Wang Y, Feng L, Zhao J, Song Y, Zhang H, et al. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella Alpina. Appl Environ Microbiol. 2013;79(10):3225–33.CrossRefPubMedPubMedCentral Wang H, Chen H, Hao G, Yang B, Feng Y, Wang Y, Feng L, Zhao J, Song Y, Zhang H, et al. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella Alpina. Appl Environ Microbiol. 2013;79(10):3225–33.CrossRefPubMedPubMedCentral
46.
go back to reference Shchepin R, Moller MN, Kim HY, Hatch DM, Bartesaghi S, Kalyanaraman B, Radi R, Porter NA. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization. J Am Chem Soc. 2010;132(49):17490–500.CrossRefPubMedPubMedCentral Shchepin R, Moller MN, Kim HY, Hatch DM, Bartesaghi S, Kalyanaraman B, Radi R, Porter NA. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization. J Am Chem Soc. 2010;132(49):17490–500.CrossRefPubMedPubMedCentral
47.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed
48.
go back to reference Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, et al. ArrayExpress update--simplifying data submissions. Nucleic Acids Res. 2015;43(Database issue):D1113–6.CrossRefPubMed Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, et al. ArrayExpress update--simplifying data submissions. Nucleic Acids Res. 2015;43(Database issue):D1113–6.CrossRefPubMed
49.
go back to reference Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England). 2004;20(3):307–15.CrossRef Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England). 2004;20(3):307–15.CrossRef
50.
go back to reference Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics (Oxford, England). 2009;25(3):415–6.CrossRef Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics (Oxford, England). 2009;25(3):415–6.CrossRef
51.
go back to reference Liu H, Zeeberg BR, Qu G, Koru AG, Ferrucci A, Kahn A, Ryan MC, Nuhanovic A, Munson PJ, Reinhold WC, et al. AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets. Bioinformatics (Oxford, England). 2007;23(18):2385–90.CrossRef Liu H, Zeeberg BR, Qu G, Koru AG, Ferrucci A, Kahn A, Ryan MC, Nuhanovic A, Munson PJ, Reinhold WC, et al. AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets. Bioinformatics (Oxford, England). 2007;23(18):2385–90.CrossRef
52.
go back to reference Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014;42(Database issue):D756–63.CrossRefPubMed Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014;42(Database issue):D756–63.CrossRefPubMed
53.
go back to reference Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England). 2007;8(1):118–27.CrossRef Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England). 2007;8(1):118–27.CrossRef
54.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.CrossRefPubMedPubMedCentral
56.
go back to reference Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281–300.CrossRefPubMed Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281–300.CrossRefPubMed
57.
go back to reference Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics (Oxford, England). 2008;24(5):719–20.CrossRef Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics (Oxford, England). 2008;24(5):719–20.CrossRef
58.
go back to reference Langfelder P, Horvath S, Fast R. Functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(11):i11. Langfelder P, Horvath S, Fast R. Functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(11):i11.
59.
go back to reference Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England). 2009;25(8):1091–3.CrossRef Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England). 2009;25(8):1091–3.CrossRef
60.
go back to reference Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7.CrossRefPubMed Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7.CrossRefPubMed
61.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
62.
go back to reference Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.CrossRefPubMedPubMedCentral Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.CrossRefPubMedPubMedCentral
63.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRefPubMedPubMedCentral
Metadata
Title
Cattle infection response network and its functional modules
Authors
Hamid Beiki
Abbas Pakdel
Ardeshir Nejati Javaremi
Ali Masoudi-Nejad
James M. Reecy
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2018
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-017-0238-4

Other articles of this Issue 1/2018

BMC Immunology 1/2018 Go to the issue