Skip to main content
Top
Published in: BMC Immunology 1/2016

Open Access 01-12-2016 | Research article

Avidity characterization of genetically engineered T-cells with novel and established approaches

Authors: Victoria Hillerdal, Vanessa F. Boura, Hanna Björkelund, Karl Andersson, Magnus Essand

Published in: BMC Immunology | Issue 1/2016

Login to get access

Abstract

Background

Adoptive transfer of genetically engineered autologous T-cells is becoming a successful therapy for cancer. The avidity of the engineered T-cells is of crucial importance for therapy success. We have in the past cloned a T-cell receptor (TCR) that recognizes an HLA-A2 (MHC class I)-restricted peptide from the prostate and breast cancer- associated antigen TARP. Herein we perform a side-by-side comparison of the TARP-specific TCR (TARP-TCR) with a newly cloned TCR specific for an HLA-A2-restricted peptide from the cytomegalovirus (CMV) pp65 antigen.

Results

Both CD8+ T-cells and CD4+ T-cells transduced with the HLA-A2-restricted TARP-TCR could readily be detected by multimer analysis, indicating that the binding is rather strong, since binding occured also without the CD8 co-receptor of HLA-A2. Not surprisingly, the TARP-TCR, which is directed against a self-antigen, had weaker binding to the HLA-A2/peptide complex than the CMV pp65-specific TCR (pp65-TCR), which is directed against a viral epitope. Higher peptide concentrations were needed to achieve efficient cytokine release and killing of target cells when the TARP-TCR was used. We further introduce the LigandTracer technology to study cell-cell interactions in real time by evaluating the interaction between TCR-engineered T-cells and peptide-pulsed cancer cells. We were able to successfully detect TCR-engineered T-cell binding kinetics to the target cells. We also used the xCELLigence technology to analyzed cell growth of target cells to assess the killing potency of the TCR-engineered T-cells. T-cells transduced with the pp65 - TCR exhibited more pronounced cytotoxicity, being able to kill their targets at both lower effector to target ratios and lower peptide concentrations.

Conclusion

The combination of binding assay with functional assays yields data suggesting that TARP-TCR-engineered T-cells bind to their target, but need more antigen stimulation compared to the pp65-TCR to achieve full effector response. Nonetheless, we believe that the TARP-TCR is an attractive candidate for immunotherapy development for prostate and/or breast cancer.
Literature
1.
go back to reference Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21:456-61. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21:456-61.
2.
go back to reference Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol. 2015;24:113–8.CrossRefPubMed Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol. 2015;24:113–8.CrossRefPubMed
3.
go back to reference Davila ML, Riviere I, Wang X, Bartido S, Park J, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.CrossRefPubMedPubMedCentral Davila ML, Riviere I, Wang X, Bartido S, Park J, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.CrossRefPubMedPubMedCentral
4.
go back to reference Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.CrossRefPubMed Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.CrossRefPubMed
5.
go back to reference Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.CrossRefPubMed Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.CrossRefPubMed
6.
go back to reference Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.CrossRefPubMedPubMedCentral Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.CrossRefPubMedPubMedCentral
7.
go back to reference Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells. J Immunol. 2015;194:911–20.CrossRefPubMed Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells. J Immunol. 2015;194:911–20.CrossRefPubMed
8.
go back to reference Turatti F, Figini M, Balladore E, Alberti P, Casalini P, Marks JD, Canevari S, Mezzanzanica D. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother. 2007;30:684–93.CrossRefPubMed Turatti F, Figini M, Balladore E, Alberti P, Casalini P, Marks JD, Canevari S, Mezzanzanica D. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother. 2007;30:684–93.CrossRefPubMed
9.
10.
go back to reference Holler PD, Kranz DM. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity. 2003;18:255–64.CrossRefPubMed Holler PD, Kranz DM. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity. 2003;18:255–64.CrossRefPubMed
11.
12.
go back to reference Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK. Different affinity windows for virus and cancer-specific T-cell receptors: Implications for therapeutic strategies. Eur J Immunol. 2012;42:3174-9. Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK. Different affinity windows for virus and cancer-specific T-cell receptors: Implications for therapeutic strategies. Eur J Immunol. 2012;42:3174-9.
13.
go back to reference Hillerdal V, Nilsson B, Carlsson B, Eriksson F, Essand M. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc Natl Acad Sci U S A. 2012;109:15877–81.CrossRefPubMedPubMedCentral Hillerdal V, Nilsson B, Carlsson B, Eriksson F, Essand M. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc Natl Acad Sci U S A. 2012;109:15877–81.CrossRefPubMedPubMedCentral
14.
go back to reference Carlsson B, Totterman TH, Essand M. Generation of cytotoxic T lymphocytes specific for the prostate and breast tissue antigen TARP. Prostate. 2004;61:161–70.CrossRefPubMed Carlsson B, Totterman TH, Essand M. Generation of cytotoxic T lymphocytes specific for the prostate and breast tissue antigen TARP. Prostate. 2004;61:161–70.CrossRefPubMed
15.
go back to reference Carlsson B, Cheng WS, Totterman TH, Essand M. Ex vivo stimulation of cytomegalovirus (CMV)-specific T cells using CMV pp 65-modified dendritic cells as stimulators. Br J Haematol. 2003;121:428–38.CrossRefPubMed Carlsson B, Cheng WS, Totterman TH, Essand M. Ex vivo stimulation of cytomegalovirus (CMV)-specific T cells using CMV pp 65-modified dendritic cells as stimulators. Br J Haematol. 2003;121:428–38.CrossRefPubMed
16.
go back to reference Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol. 1999;162:2227–34.PubMed Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol. 1999;162:2227–34.PubMed
17.
go back to reference Holmberg K, Mariathasan S, Ohteki T, Ohashi PS, Gascoigne NR. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. J Immunol. 2003;171:2427–34.CrossRefPubMed Holmberg K, Mariathasan S, Ohteki T, Ohashi PS, Gascoigne NR. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. J Immunol. 2003;171:2427–34.CrossRefPubMed
18.
19.
go back to reference Szomolay B, Williams T, Wooldridge L, van den Berg HA. Co-receptor CD8-mediated modulation of T-cell receptor functional sensitivity and epitope recognition degeneracy. Front Immunol. 2013;4:329.CrossRefPubMedPubMedCentral Szomolay B, Williams T, Wooldridge L, van den Berg HA. Co-receptor CD8-mediated modulation of T-cell receptor functional sensitivity and epitope recognition degeneracy. Front Immunol. 2013;4:329.CrossRefPubMedPubMedCentral
21.
go back to reference Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol. 2013;4:206.PubMedPubMedCentral Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol. 2013;4:206.PubMedPubMedCentral
22.
go back to reference Asemissen AM, Nagorsen D, Keilholz U, Letsch A, Schmittel A, Thiel E, Scheibenbogen C. Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods. 2001;251:101–8.CrossRefPubMed Asemissen AM, Nagorsen D, Keilholz U, Letsch A, Schmittel A, Thiel E, Scheibenbogen C. Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods. 2001;251:101–8.CrossRefPubMed
23.
go back to reference Goulder PJ, Tang Y, Brander C, Betts MR, Altfeld M, et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J Exp Med. 2000;192:1819–32.CrossRefPubMedPubMedCentral Goulder PJ, Tang Y, Brander C, Betts MR, Altfeld M, et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J Exp Med. 2000;192:1819–32.CrossRefPubMedPubMedCentral
24.
go back to reference Koksoy S, Mathes LE. Evaluation of bystander recruitment and cytotoxic functions of the IFN-gamma producing alloreactive CD8+ T cells in mice. Immunol Lett. 2005;97:141–9.CrossRefPubMed Koksoy S, Mathes LE. Evaluation of bystander recruitment and cytotoxic functions of the IFN-gamma producing alloreactive CD8+ T cells in mice. Immunol Lett. 2005;97:141–9.CrossRefPubMed
25.
go back to reference Regner M, Lobigs M, Blanden RV, Mullbacher A. Effector cytolotic function but not IFN-gamma production in cytotoxic T cells triggered by virus-infected target cells in vitro. Scand J Immunol. 2001;54:366–74.CrossRefPubMed Regner M, Lobigs M, Blanden RV, Mullbacher A. Effector cytolotic function but not IFN-gamma production in cytotoxic T cells triggered by virus-infected target cells in vitro. Scand J Immunol. 2001;54:366–74.CrossRefPubMed
26.
go back to reference Macgregor JN, Li Q, Chang AE, Braun TM, Hughes DP, McDonagh KT. Ex vivo culture with interleukin (IL)-12 improves CD8(+) T-cell adoptive immunotherapy for murine leukemia independent of IL-18 or IFN-gamma but requires perforin. Cancer Res. 2006;66:4913–21.CrossRefPubMed Macgregor JN, Li Q, Chang AE, Braun TM, Hughes DP, McDonagh KT. Ex vivo culture with interleukin (IL)-12 improves CD8(+) T-cell adoptive immunotherapy for murine leukemia independent of IL-18 or IFN-gamma but requires perforin. Cancer Res. 2006;66:4913–21.CrossRefPubMed
27.
go back to reference Bossi G, Gerry AB, Paston SJ, Sutton DH, Hassan NJ, Jakobsen BK. Examining the presentation of tumor-associated antigens on peptide-pulsed T2 cells. Oncoimmunology. 2013;2:e26840.CrossRefPubMedPubMedCentral Bossi G, Gerry AB, Paston SJ, Sutton DH, Hassan NJ, Jakobsen BK. Examining the presentation of tumor-associated antigens on peptide-pulsed T2 cells. Oncoimmunology. 2013;2:e26840.CrossRefPubMedPubMedCentral
28.
go back to reference Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319:1676–80.CrossRefPubMed Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319:1676–80.CrossRefPubMed
29.
go back to reference Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36:133–51.CrossRefPubMedPubMedCentral Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36:133–51.CrossRefPubMedPubMedCentral
Metadata
Title
Avidity characterization of genetically engineered T-cells with novel and established approaches
Authors
Victoria Hillerdal
Vanessa F. Boura
Hanna Björkelund
Karl Andersson
Magnus Essand
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2016
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-016-0162-z

Other articles of this Issue 1/2016

BMC Immunology 1/2016 Go to the issue