Skip to main content
Top
Published in: BMC Immunology 1/2015

Open Access 01-12-2015 | Research article

Impact of microRNA-130a on the neutrophil proteome

Authors: Corinna Cavan Pedersen, Jan Christian Refsgaard, Ole Østergaard, Lars Juhl Jensen, Niels Henrik Helweg Heegaard, Niels Borregaard, Jack Bernard Cowland

Published in: BMC Immunology | Issue 1/2015

Login to get access

Abstract

Background

MicroRNAs (miRNAs) are important for the development and function of neutrophils. miR-130a is highly expressed during early neutrophil development and regulates target proteins important for this process. miRNA targets are often identified by validating putative targets found by in silico prediction algorithms one at a time. However, one miRNA can have many different targets, which may vary depending on the context. Here, we investigated the effect of miR-130a on the proteome of a murine and a human myeloid cell line.

Results

Using pulsed stable isotope labelling of amino acids in cell culture and mass spectrometry for protein identification and quantitation, we found 44 and 34 proteins that were significantly regulated following inhibition of miR-130a in a miR-130a-overexpressing 32Dcl3 clone and Kasumi-1 cells, respectively. The level of miR-130a inhibition correlated with the impact on protein levels. We used RAIN, a novel database for miRNA–protein and protein–protein interactions, to identify putative miR-130a targets. In the 32Dcl3 clone, putative targets were more up-regulated than the remaining quantified proteins following miR-130a inhibition, and three significantly derepressed proteins (NFYC, ISOC1, and CAT) are putative miR-130a targets with good RAIN scores. We also created a network including inferred, putative neutrophil miR-130a targets and identified the transcription factors Myb and CBF-β as putative miR-130a targets, which may regulate the primary granule proteins MPO and PRTN3 and other proteins differentially expressed following miR-130a inhibition in the 32Dcl3 clone.

Conclusion

We have experimentally identified miR-130a-regulated proteins within the neutrophil proteome. Linking these to putative miR-130a targets, we provide an association network of potential direct and indirect miR-130a targets that expands our knowledge on the role of miR-130a in neutrophil development and is a valuable platform for further experimental studies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol. 2007;7(2):105–17.CrossRefPubMed Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol. 2007;7(2):105–17.CrossRefPubMed
3.
go back to reference Tenen DG, Hromas R, Licht JD, Zhang DE. Transcription factors, normal myeloid development, and leukemia. Blood. 1997;90(2):489–519.PubMed Tenen DG, Hromas R, Licht JD, Zhang DE. Transcription factors, normal myeloid development, and leukemia. Blood. 1997;90(2):489–519.PubMed
4.
go back to reference Nakajima H, Watanabe N, Shibata F, Kitamura T, Ikeda Y, Handa M. N-terminal region of CCAAT/enhancer-binding protein epsilon is critical for cell cycle arrest, apoptosis, and functional maturation during myeloid differentiation. J Biol Chem. 2006;281(20):14494–502.CrossRefPubMed Nakajima H, Watanabe N, Shibata F, Kitamura T, Ikeda Y, Handa M. N-terminal region of CCAAT/enhancer-binding protein epsilon is critical for cell cycle arrest, apoptosis, and functional maturation during myeloid differentiation. J Biol Chem. 2006;281(20):14494–502.CrossRefPubMed
5.
8.
go back to reference Di LG, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.CrossRef Di LG, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.CrossRef
9.
go back to reference Hager M, Pedersen CC, Larsen MT, Andersen MK, Hother C, Gronbaek K, et al. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-beta1 stimulation in granulocytic precursors. Blood. 2011;118(25):6649–59.CrossRefPubMed Hager M, Pedersen CC, Larsen MT, Andersen MK, Hother C, Gronbaek K, et al. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-beta1 stimulation in granulocytic precursors. Blood. 2011;118(25):6649–59.CrossRefPubMed
10.
go back to reference Larsen MT, Hother C, Hager M, Pedersen CC, Theilgaard-Monch K, Borregaard N, et al. MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation. PLoS One. 2013;8(3):e58454.PubMedCentralCrossRefPubMed Larsen MT, Hother C, Hager M, Pedersen CC, Theilgaard-Monch K, Borregaard N, et al. MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation. PLoS One. 2013;8(3):e58454.PubMedCentralCrossRefPubMed
11.
go back to reference Larsen MT, Hager M, Glenthoj A, Asmar F, Clemmensen SN, Mora-Jensen H, et al. miRNA-130a regulates C/EBP-epsilon expression during granulopoiesis. Blood. 2014;123(7):1079–89.CrossRefPubMed Larsen MT, Hager M, Glenthoj A, Asmar F, Clemmensen SN, Mora-Jensen H, et al. miRNA-130a regulates C/EBP-epsilon expression during granulopoiesis. Blood. 2014;123(7):1079–89.CrossRefPubMed
13.
go back to reference Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.CrossRefPubMed Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.CrossRefPubMed
15.
go back to reference Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood. 2009;113(2):396–402.CrossRefPubMed Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood. 2009;113(2):396–402.CrossRefPubMed
16.
18.
go back to reference Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.CrossRefPubMed Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.CrossRefPubMed
19.
go back to reference Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA. 2008;14(12):2580–96.PubMedCentralCrossRefPubMed Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA. 2008;14(12):2580–96.PubMedCentralCrossRefPubMed
20.
go back to reference Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51.PubMedCentralCrossRefPubMed Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51.PubMedCentralCrossRefPubMed
21.
go back to reference Sun R, Fu X, Li Y, Xie Y, Mao Y. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics. 2009;10:93.PubMedCentralCrossRefPubMed Sun R, Fu X, Li Y, Xie Y, Mao Y. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics. 2009;10:93.PubMedCentralCrossRefPubMed
22.
go back to reference Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 2006;34(16):e107.PubMedCentralCrossRefPubMed Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 2006;34(16):e107.PubMedCentralCrossRefPubMed
24.
go back to reference Lossner C, Warnken U, Pscherer A, Schnolzer M. Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem. 2011;412(1):123–5.CrossRefPubMed Lossner C, Warnken U, Pscherer A, Schnolzer M. Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem. 2011;412(1):123–5.CrossRefPubMed
25.
go back to reference Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75(3):663–70.CrossRefPubMed Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75(3):663–70.CrossRefPubMed
26.
go back to reference Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.CrossRefPubMed Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.CrossRefPubMed
27.
go back to reference Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805.CrossRefPubMed Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805.CrossRefPubMed
28.
go back to reference Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57(1):289–300.
29.
go back to reference Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011;2011:bar030.CrossRef Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011;2011:bar030.CrossRef
30.
go back to reference Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–85.PubMedCentralCrossRefPubMed Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–85.PubMedCentralCrossRefPubMed
31.
go back to reference Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res. 2014;42(Database issue):D104–8.PubMedCentralCrossRefPubMed Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res. 2014;42(Database issue):D104–8.PubMedCentralCrossRefPubMed
32.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.PubMedCentralCrossRefPubMed Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.PubMedCentralCrossRefPubMed
33.
go back to reference Croft L, Szklarczyk D, Jensen LJ, Gorodkin J. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs. BMC Syst Biol. 2012;6:90.PubMedCentralCrossRefPubMed Croft L, Szklarczyk D, Jensen LJ, Gorodkin J. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs. BMC Syst Biol. 2012;6:90.PubMedCentralCrossRefPubMed
34.
go back to reference Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18(10):1139–46.PubMedCentralCrossRefPubMed Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18(10):1139–46.PubMedCentralCrossRefPubMed
35.
go back to reference Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.CrossRefPubMed Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.CrossRefPubMed
36.
go back to reference Rennie W, Liu C, Carmack CS, Wolenc A, Kanoria S, Lu J, et al. STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res. 2014;42(Web Server issue):W114–8.PubMedCentralCrossRefPubMed Rennie W, Liu C, Carmack CS, Wolenc A, Kanoria S, Lu J, et al. STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res. 2014;42(Web Server issue):W114–8.PubMedCentralCrossRefPubMed
37.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.PubMedCentralCrossRefPubMed Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.PubMedCentralCrossRefPubMed
38.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedCentralCrossRefPubMed Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedCentralCrossRefPubMed
39.
go back to reference Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.PubMedCentralCrossRef Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.PubMedCentralCrossRef
40.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef
41.
go back to reference Ebner OA, Selbach M. Whole cell proteome regulation by microRNAs captured in a pulsed SILAC mass spectrometry approach. Methods Mol Biol. 2011;725:315–31.CrossRefPubMed Ebner OA, Selbach M. Whole cell proteome regulation by microRNAs captured in a pulsed SILAC mass spectrometry approach. Methods Mol Biol. 2011;725:315–31.CrossRefPubMed
42.
go back to reference Kaller M, Oeljeklaus S, Warscheid B, Hermeking H. Identification of microRNA targets by pulsed SILAC. Methods Mol Biol. 2014;1188:327–49.CrossRefPubMed Kaller M, Oeljeklaus S, Warscheid B, Hermeking H. Identification of microRNA targets by pulsed SILAC. Methods Mol Biol. 2014;1188:327–49.CrossRefPubMed
43.
go back to reference Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10(2):141–8.CrossRefPubMed Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10(2):141–8.CrossRefPubMed
44.
go back to reference Vlachos IS, Hatzigeorgiou AG. Online resources for miRNA analysis. Clin Biochem. 2013;46(10–11):879–900.CrossRefPubMed Vlachos IS, Hatzigeorgiou AG. Online resources for miRNA analysis. Clin Biochem. 2013;46(10–11):879–900.CrossRefPubMed
45.
go back to reference Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31.CrossRefPubMed Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31.CrossRefPubMed
46.
go back to reference Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.CrossRefPubMed Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.CrossRefPubMed
47.
go back to reference Tacheny A, Dieu M, Arnould T, Renard P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J Proteomics. 2013;94:89–109.CrossRefPubMed Tacheny A, Dieu M, Arnould T, Renard P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J Proteomics. 2013;94:89–109.CrossRefPubMed
48.
go back to reference Bjerregaard MD, Jurlander J, Klausen P, Borregaard N, Cowland JB. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood. 2003;101(11):4322–32.CrossRefPubMed Bjerregaard MD, Jurlander J, Klausen P, Borregaard N, Cowland JB. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood. 2003;101(11):4322–32.CrossRefPubMed
49.
go back to reference Yao C, Qin Z, Works KN, Austin GE, Young AN. C/EBP and C-Myb sites are important for the functional activity of the human myeloperoxidase upstream enhancer. Biochem Biophys Res Commun. 2008;371(2):309–14.CrossRefPubMed Yao C, Qin Z, Works KN, Austin GE, Young AN. C/EBP and C-Myb sites are important for the functional activity of the human myeloperoxidase upstream enhancer. Biochem Biophys Res Commun. 2008;371(2):309–14.CrossRefPubMed
50.
go back to reference Sturrock A, Franklin KF, Wu S, Hoidal JR. Characterization and localization of the genes for mouse proteinase-3 (Prtn3) and neutrophil elastase (Ela2). Cytogenet Cell Genet. 1998;83(1–2):104–8.CrossRefPubMed Sturrock A, Franklin KF, Wu S, Hoidal JR. Characterization and localization of the genes for mouse proteinase-3 (Prtn3) and neutrophil elastase (Ela2). Cytogenet Cell Genet. 1998;83(1–2):104–8.CrossRefPubMed
51.
go back to reference Klausen P, Bjerregaard MD, Borregaard N, Cowland JB. End-stage differentiation of neutrophil granulocytes in vivo is accompanied by up-regulation of p27kip1 and down-regulation of CDK2, CDK4, and CDK6. J Leukoc Biol. 2004;75(3):569–78.CrossRefPubMed Klausen P, Bjerregaard MD, Borregaard N, Cowland JB. End-stage differentiation of neutrophil granulocytes in vivo is accompanied by up-regulation of p27kip1 and down-regulation of CDK2, CDK4, and CDK6. J Leukoc Biol. 2004;75(3):569–78.CrossRefPubMed
52.
go back to reference Benatti P, Dolfini D, Vigano A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res. 2011;39(13):5356–68.PubMedCentralCrossRefPubMed Benatti P, Dolfini D, Vigano A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res. 2011;39(13):5356–68.PubMedCentralCrossRefPubMed
53.
go back to reference Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, et al. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One. 2013;8(2):e57395.PubMedCentralCrossRefPubMed Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, et al. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One. 2013;8(2):e57395.PubMedCentralCrossRefPubMed
54.
go back to reference Yamaga R, Ikeda K, Boele J, Horie-Inoue K, Takayama K, Urano T, et al. Systemic identification of estrogen-regulated genes in breast cancer cells through cap analysis of gene expression mapping. Biochem Biophys Res Commun. 2014;447(3):531–6.CrossRefPubMed Yamaga R, Ikeda K, Boele J, Horie-Inoue K, Takayama K, Urano T, et al. Systemic identification of estrogen-regulated genes in breast cancer cells through cap analysis of gene expression mapping. Biochem Biophys Res Commun. 2014;447(3):531–6.CrossRefPubMed
55.
go back to reference Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208.CrossRefPubMed Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208.CrossRefPubMed
56.
go back to reference Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: SWItching from malignancies to intellectual disability. Epigenetics. 2012;7(11):1219–24.PubMedCentralCrossRefPubMed Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: SWItching from malignancies to intellectual disability. Epigenetics. 2012;7(11):1219–24.PubMedCentralCrossRefPubMed
Metadata
Title
Impact of microRNA-130a on the neutrophil proteome
Authors
Corinna Cavan Pedersen
Jan Christian Refsgaard
Ole Østergaard
Lars Juhl Jensen
Niels Henrik Helweg Heegaard
Niels Borregaard
Jack Bernard Cowland
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2015
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-015-0134-8

Other articles of this Issue 1/2015

BMC Immunology 1/2015 Go to the issue