Skip to main content
Top
Published in: Journal of Ophthalmic Inflammation and Infection 1/2019

Open Access 01-12-2019 | Uveitis | Review

Optical coherence tomography angiography (OCTA) as a new diagnostic tool in uveitis

Authors: Vita L. S. Dingerkus, Marion R. Munk, Max P. Brinkmann, Florentina J. Freiberg, Florian M. A. Heussen, Stephan Kinzl, Sandra Lortz, Selim Orgül, Matthias Becker

Published in: Journal of Ophthalmic Inflammation and Infection | Issue 1/2019

Login to get access

Abstract

Background

The broad spectrum of uveitis disorders requires a multimodal imaging approach in the daily practice of an ophthalmologist. As inflammatory conditions, they have in common an alteration in leukocyte migration. In this context, optical coherence tomography angiography (OCTA) might be of great value for diagnosing or following up patients with these disorders. To date, OCTA has rather been used as an additional tool besides the well-established diagnostic imaging tools, but its complementary diagnostic features become increasingly relevant, to follow disease activity and treatment response and for the understanding of pathomechanisms of various uveitis types.
This review summarizes the possible applications of OCTA and its advantages and disadvantages as opposed to dye-based angiographies in uveitic diseases.

Main body

Hitherto gold standards in the diagnostic workup of posterior or intermediate uveitis have been angiography on a dye-based method, which is fluorescein or indocyanine green. It gives information about the status of the blood-retinal barrier and the retinal and choroidal vasculature by visualizing diffuse leakage as a state of inflammation or complications as an ischemia or choroidal neovascularization. As noninvasive methods, fundus autofluorescence depicts the status of metabolic activity of the retinal pigment epithelium and OCT or enhanced depth imaging OCT, respectively, as a depth-resolving imaging method can supply additional information.
OCTA as a non-invasive, depth-resolution imaging tool of retinal and choroidal vessels adds detailed qualitative and quantitative information of the status of retinal and choroidal vessels and bridges the gap between the mentioned conventional diagnostic tools used in uveitis.
It is important, though, to be aware of its limitations, such as its susceptibility to motion artifacts, limited comparability among different devices, and restricted contribution of information regarding the grade of disease activity.

Conclusion

OCTA as a non-invasive, depth-resolution imaging tool can give qualitative and quantitative information about the status of retinal and choroidal vessels, but also has certain limitations. Employing OCTA as a complementary rather than exclusive tool, it can give important additional information about the macro- and microvasculature under inflammatory circumstances. Thereby, it also contributes to the understanding of the pathophysiology of various uveitis entities.
Literature
1.
go back to reference White B et al (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt Express 11(25):3490–3497PubMedCrossRef White B et al (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt Express 11(25):3490–3497PubMedCrossRef
3.
4.
go back to reference Lipson BK, Yannuzzi LA (1989) Complications of intravenous fluorescein injections. Int Ophthalmol Clin 29(3):200–205PubMedCrossRef Lipson BK, Yannuzzi LA (1989) Complications of intravenous fluorescein injections. Int Ophthalmol Clin 29(3):200–205PubMedCrossRef
5.
go back to reference Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50PubMedCrossRef Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50PubMedCrossRef
6.
go back to reference Coscas G, Lupidi M, Coscas F (2016) Image analysis of optical coherence tomography angiography. Dev Ophthalmol 56:30–36PubMedCrossRef Coscas G, Lupidi M, Coscas F (2016) Image analysis of optical coherence tomography angiography. Dev Ophthalmol 56:30–36PubMedCrossRef
7.
go back to reference Khairallah M et al (2017) Optical coherence tomography angiography in patients with Behcet uveitis. Retina 37(9):1678–1691PubMedCrossRef Khairallah M et al (2017) Optical coherence tomography angiography in patients with Behcet uveitis. Retina 37(9):1678–1691PubMedCrossRef
8.
go back to reference Spaide RF (2017) Microvascular flow abnormalities associated with retinal vasculitis: a potential of mechanism of retinal injury. Retina 37(6):1034–1042PubMedCrossRef Spaide RF (2017) Microvascular flow abnormalities associated with retinal vasculitis: a potential of mechanism of retinal injury. Retina 37(6):1034–1042PubMedCrossRef
9.
go back to reference Abucham-Neto JZ et al (2018) Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis. Int J Retina Vitreous 4:15PubMedPubMedCentralCrossRef Abucham-Neto JZ et al (2018) Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis. Int J Retina Vitreous 4:15PubMedPubMedCentralCrossRef
11.
12.
13.
go back to reference Gupta V, Al-Dhibi HA, Arevalo JF (2014) Retinal imaging in uveitis Saudi journal of ophthalmology : official journal of the Saudi. Ophthalmological Soc 28(2):95–103 Gupta V, Al-Dhibi HA, Arevalo JF (2014) Retinal imaging in uveitis Saudi journal of ophthalmology : official journal of the Saudi. Ophthalmological Soc 28(2):95–103
14.
go back to reference Fardeau C et al (2016) Uveitic macular edema. Eye (Lond) 30(10):1277–1292CrossRef Fardeau C et al (2016) Uveitic macular edema. Eye (Lond) 30(10):1277–1292CrossRef
15.
go back to reference Agarwal A et al (2018) An update on inflammatory choroidal neovascularization: epidemiology, multimodal imaging, and management. J Ophthalmic Inflamm Infect 8(1):13PubMedPubMedCentralCrossRef Agarwal A et al (2018) An update on inflammatory choroidal neovascularization: epidemiology, multimodal imaging, and management. J Ophthalmic Inflamm Infect 8(1):13PubMedPubMedCentralCrossRef
16.
go back to reference Kempen JH et al (2013) Fluorescein angiography versus optical coherence tomography for diagnosis of uveitic macular edema. Ophthalmology 120(9):1852–1859PubMedCrossRef Kempen JH et al (2013) Fluorescein angiography versus optical coherence tomography for diagnosis of uveitic macular edema. Ophthalmology 120(9):1852–1859PubMedCrossRef
17.
go back to reference Campbell JP et al (2012) Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol 154(5):908–911.e2PubMedCrossRef Campbell JP et al (2012) Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol 154(5):908–911.e2PubMedCrossRef
18.
go back to reference Mesquida M et al (2014) Use of ultra-wide-field retinal imaging in the management of active Behcet retinal vasculitis. Retina 34(10):2121–2127PubMedCrossRef Mesquida M et al (2014) Use of ultra-wide-field retinal imaging in the management of active Behcet retinal vasculitis. Retina 34(10):2121–2127PubMedCrossRef
19.
go back to reference Pichi F et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201PubMedCrossRef Pichi F et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201PubMedCrossRef
20.
go back to reference Kawali A et al (2017) Multimodal imaging of the normal eye. Ocul Immunol Inflamm 25(5):726–736CrossRef Kawali A et al (2017) Multimodal imaging of the normal eye. Ocul Immunol Inflamm 25(5):726–736CrossRef
21.
go back to reference Pichi F et al (2017) Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis. J Ophthalmic Inflamm Infect 7(1):20PubMedPubMedCentralCrossRef Pichi F et al (2017) Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis. J Ophthalmic Inflamm Infect 7(1):20PubMedPubMedCentralCrossRef
22.
go back to reference Spaide RF et al (1996) Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 16(3):203–213PubMedCrossRef Spaide RF et al (1996) Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 16(3):203–213PubMedCrossRef
23.
go back to reference Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105(3):432–440PubMedCrossRef Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105(3):432–440PubMedCrossRef
24.
go back to reference Herbort CP (2009) Fluorescein and indocyanine green angiography for uveitis. Middle East Afr J Ophthalmol 16(4):168–187PubMedPubMedCentral Herbort CP (2009) Fluorescein and indocyanine green angiography for uveitis. Middle East Afr J Ophthalmol 16(4):168–187PubMedPubMedCentral
25.
go back to reference Chang AA, Zhu M, Billson F (2005) The interaction of indocyanine green with human retinal pigment epithelium. Invest Ophthalmol Vis Sci 46(4):1463–1467PubMedCrossRef Chang AA, Zhu M, Billson F (2005) The interaction of indocyanine green with human retinal pigment epithelium. Invest Ophthalmol Vis Sci 46(4):1463–1467PubMedCrossRef
26.
go back to reference Bonte CA, Ceuppens J, Leys AM (1998) Hypotensive shock as a complication of infracyanine green injection. Retina 18(5):476–477PubMedCrossRef Bonte CA, Ceuppens J, Leys AM (1998) Hypotensive shock as a complication of infracyanine green injection. Retina 18(5):476–477PubMedCrossRef
27.
go back to reference Kashani AH et al (2018) Suspended scattering particles in motion: a novel feature of OCT angiography in exudative maculopathies. Ophthalmol Retina 2(7):694–702PubMedCrossRef Kashani AH et al (2018) Suspended scattering particles in motion: a novel feature of OCT angiography in exudative maculopathies. Ophthalmol Retina 2(7):694–702PubMedCrossRef
28.
go back to reference Gorczynska I et al (2016) Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed Opt Express 7(3):911–942PubMedPubMedCentralCrossRef Gorczynska I et al (2016) Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed Opt Express 7(3):911–942PubMedPubMedCentralCrossRef
29.
30.
go back to reference Yu S et al (2018) Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS One 13(10):e0204501PubMedPubMedCentralCrossRef Yu S et al (2018) Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS One 13(10):e0204501PubMedPubMedCentralCrossRef
31.
go back to reference Ploner SB et al (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36(Suppl 1):S118–s126PubMedPubMedCentralCrossRef Ploner SB et al (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina 36(Suppl 1):S118–s126PubMedPubMedCentralCrossRef
33.
go back to reference Corvi F et al (2018) Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol 186:25–31PubMedCrossRef Corvi F et al (2018) Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol 186:25–31PubMedCrossRef
34.
go back to reference Or C et al (2018) Use of OCTA, FA, and ultra-widefield imaging in quantifying retinal ischemia: a review. Asia Pac J Ophthalmol (Phila) 7(1):46–51PubMedCentralCrossRef Or C et al (2018) Use of OCTA, FA, and ultra-widefield imaging in quantifying retinal ischemia: a review. Asia Pac J Ophthalmol (Phila) 7(1):46–51PubMedCentralCrossRef
36.
go back to reference Kim AY et al (2016) Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol 171:101–112PubMedPubMedCentralCrossRef Kim AY et al (2016) Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol 171:101–112PubMedPubMedCentralCrossRef
37.
go back to reference Ang M et al (2018) Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol 102(7):873–877PubMedCrossRef Ang M et al (2018) Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol 102(7):873–877PubMedCrossRef
38.
go back to reference Stanzel, T.P., et al., Comparison of optical coherence tomography angiography to indocyanine green angiography and slit lamp photography for corneal vascularization in an animal model. Sci Rep, 2018. 8(1): p. 11493 Stanzel, T.P., et al., Comparison of optical coherence tomography angiography to indocyanine green angiography and slit lamp photography for corneal vascularization in an animal model. Sci Rep, 2018. 8(1): p. 11493
39.
go back to reference Roberts PK, Goldstein DA, Fawzi AA (2017) Anterior segment optical coherence tomography angiography for identification of iris vasculature and staging of iris neovascularization: a pilot study. Curr Eye Res 42(8):1136–1142PubMedPubMedCentralCrossRef Roberts PK, Goldstein DA, Fawzi AA (2017) Anterior segment optical coherence tomography angiography for identification of iris vasculature and staging of iris neovascularization: a pilot study. Curr Eye Res 42(8):1136–1142PubMedPubMedCentralCrossRef
40.
go back to reference Zett C et al (2018) Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis. Graefes Arch Clin Exp Ophthalmol 256(4):683–691PubMedCrossRef Zett C et al (2018) Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis. Graefes Arch Clin Exp Ophthalmol 256(4):683–691PubMedCrossRef
41.
go back to reference Wintergerst MWM et al (2018) Optical coherence tomography angiography in intermediate uveitis. Am J Ophthalmol 194:35–45PubMedCrossRef Wintergerst MWM et al (2018) Optical coherence tomography angiography in intermediate uveitis. Am J Ophthalmol 194:35–45PubMedCrossRef
44.
go back to reference Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol 140(3):509–516PubMedCrossRef Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol 140(3):509–516PubMedCrossRef
45.
go back to reference Khairallah M et al (2017) Swept-source optical coherence tomography angiography in West Nile virus chorioretinitis and associated occlusive retinal vasculitis. Ophthalmic Surg Lasers Imaging Retina 48(8):672–675PubMedCrossRef Khairallah M et al (2017) Swept-source optical coherence tomography angiography in West Nile virus chorioretinitis and associated occlusive retinal vasculitis. Ophthalmic Surg Lasers Imaging Retina 48(8):672–675PubMedCrossRef
46.
go back to reference Somkijrungroj T et al (2017) Assessment of vascular change using swept-source optical coherence tomography angiography: a new theory explains central visual loss in Behcet’s disease. J Ophthalmol 2017:2180723PubMedPubMedCentral Somkijrungroj T et al (2017) Assessment of vascular change using swept-source optical coherence tomography angiography: a new theory explains central visual loss in Behcet’s disease. J Ophthalmol 2017:2180723PubMedPubMedCentral
47.
go back to reference Cheng D et al (2018) Inner retinal microvasculature damage correlates with outer retinal disruption during remission in Behcet's posterior uveitis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(3):1295–1304PubMedCrossRef Cheng D et al (2018) Inner retinal microvasculature damage correlates with outer retinal disruption during remission in Behcet's posterior uveitis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(3):1295–1304PubMedCrossRef
49.
go back to reference Raafat KA, Allam R, Medhat BM (2018) Optical coherence tomography angiography findings in patients with nonocular Behcet disease. Retina [Epub ahead of print] Raafat KA, Allam R, Medhat BM (2018) Optical coherence tomography angiography findings in patients with nonocular Behcet disease. Retina [Epub ahead of print]
51.
go back to reference Aggarwal K et al (2018) The role of optical coherence tomography angiography in the diagnosis and management of acute Vogt-Koyanagi-Harada disease. Ocul Immunol Inflamm 26(1):142–153PubMedCrossRef Aggarwal K et al (2018) The role of optical coherence tomography angiography in the diagnosis and management of acute Vogt-Koyanagi-Harada disease. Ocul Immunol Inflamm 26(1):142–153PubMedCrossRef
52.
go back to reference Aggarwal K, Agarwal A, Gupta V (2018) Type 2 choroidal neovascularization in a choroidal granuloma detected using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 49(7):534–539PubMedCrossRef Aggarwal K, Agarwal A, Gupta V (2018) Type 2 choroidal neovascularization in a choroidal granuloma detected using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 49(7):534–539PubMedCrossRef
53.
go back to reference Aggarwal K et al (2018) Detection of type 1 choroidal neovascular membranes using optical coherence tomography angiography in tubercular posterior uveitis. Retina [Epub ahead of print] Aggarwal K et al (2018) Detection of type 1 choroidal neovascular membranes using optical coherence tomography angiography in tubercular posterior uveitis. Retina [Epub ahead of print]
54.
go back to reference Cheng L et al (2016) Spectral-domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions. Am J Ophthalmol 169:145–161PubMedCrossRef Cheng L et al (2016) Spectral-domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions. Am J Ophthalmol 169:145–161PubMedCrossRef
55.
go back to reference Zahid S et al (2017) Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis. Retina 37(8):1451–1463PubMedCrossRef Zahid S et al (2017) Optical coherence tomography angiography of chorioretinal lesions due to idiopathic multifocal choroiditis. Retina 37(8):1451–1463PubMedCrossRef
56.
go back to reference Astroz P et al (2018) Optical coherence tomography angiography to distinguish choroidal neovascularization from macular inflammatory lesions in multifocal choroiditis. Retina 38(2):299–309PubMedCrossRef Astroz P et al (2018) Optical coherence tomography angiography to distinguish choroidal neovascularization from macular inflammatory lesions in multifocal choroiditis. Retina 38(2):299–309PubMedCrossRef
57.
go back to reference Levison AL et al (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101(5):616–622PubMedCrossRef Levison AL et al (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101(5):616–622PubMedCrossRef
58.
go back to reference Waizel M et al (2018) Superficial and deep retinal foveal avascular zone OCTA findings of non-infectious anterior and posterior uveitis. Graefes Arch Clin Exp Ophthalmol 256(10):1977–1984PubMedCrossRef Waizel M et al (2018) Superficial and deep retinal foveal avascular zone OCTA findings of non-infectious anterior and posterior uveitis. Graefes Arch Clin Exp Ophthalmol 256(10):1977–1984PubMedCrossRef
59.
go back to reference Maier M et al OCT angiography findings in acute posterior multifocal placoid pigment epitheliopathy (APMPPE)(2017) Ophthalmologe 114(1):60–65PubMedCrossRef Maier M et al OCT angiography findings in acute posterior multifocal placoid pigment epitheliopathy (APMPPE)(2017) Ophthalmologe 114(1):60–65PubMedCrossRef
60.
go back to reference Mangeon M et al (2017) Multimodal evaluation of patients with acute posterior multifocal placoid pigment epitheliopathy and serpiginous choroiditis. Ocul Immunol Inflamm 26(8):1–7 Mangeon M et al (2017) Multimodal evaluation of patients with acute posterior multifocal placoid pigment epitheliopathy and serpiginous choroiditis. Ocul Immunol Inflamm 26(8):1–7
61.
go back to reference Werner JU et al (2017) Multi-modal imaging including optical coherence tomography angiography in patients with posterior multifocal placoid pigment epitheliopathy. Ophthalmic Surg Lasers Imaging Retina 48(9):727–733PubMedCrossRef Werner JU et al (2017) Multi-modal imaging including optical coherence tomography angiography in patients with posterior multifocal placoid pigment epitheliopathy. Ophthalmic Surg Lasers Imaging Retina 48(9):727–733PubMedCrossRef
62.
go back to reference Salvatore S et al (2016) Multimodal imaging in acute posterior multifocal placoid pigment epitheliopathy demonstrating obstruction of the choriocapillaris. Ophthalmic Surg Lasers Imaging Retina 47(7):677–681PubMedCrossRef Salvatore S et al (2016) Multimodal imaging in acute posterior multifocal placoid pigment epitheliopathy demonstrating obstruction of the choriocapillaris. Ophthalmic Surg Lasers Imaging Retina 47(7):677–681PubMedCrossRef
63.
go back to reference Dolz-Marco R et al (2017) Optical coherence tomography angiography shows inner choroidal ischemia in acute posterior multifocal placoid pigment epitheliopathy. Retin Cases Brief Rep 11(Suppl 1):S136–S143PubMedCrossRef Dolz-Marco R et al (2017) Optical coherence tomography angiography shows inner choroidal ischemia in acute posterior multifocal placoid pigment epitheliopathy. Retin Cases Brief Rep 11(Suppl 1):S136–S143PubMedCrossRef
64.
go back to reference El Ameen A, Herbort CP Jr (2016) Serpiginous choroiditis imaged by optical coherence tomography angiography. Retin Cases Brief Rep 12(4):279–285CrossRef El Ameen A, Herbort CP Jr (2016) Serpiginous choroiditis imaged by optical coherence tomography angiography. Retin Cases Brief Rep 12(4):279–285CrossRef
65.
go back to reference Pakzad-Vaezi K et al (2018) Swept-source OCT angiography of serpiginous choroiditis. Ophthalmol Retina 2(7):712–719PubMedCrossRef Pakzad-Vaezi K et al (2018) Swept-source OCT angiography of serpiginous choroiditis. Ophthalmol Retina 2(7):712–719PubMedCrossRef
66.
go back to reference Montorio D et al (2017) Swept-source optical coherence tomography angiography in serpiginous choroiditis. Br J Ophthalmol 102(7):991–995PubMedCrossRef Montorio D et al (2017) Swept-source optical coherence tomography angiography in serpiginous choroiditis. Br J Ophthalmol 102(7):991–995PubMedCrossRef
67.
go back to reference Pichi F et al (2016) En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: new insights into pathogenesis. Retina 36(Suppl 1):S178–S188PubMedCrossRef Pichi F et al (2016) En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: new insights into pathogenesis. Retina 36(Suppl 1):S178–S188PubMedCrossRef
68.
go back to reference Yannuzzi NA et al (2017) Swept-source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome. Ophthalmic Surg Lasers Imaging Retina 48(1):69–74PubMedCrossRef Yannuzzi NA et al (2017) Swept-source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome. Ophthalmic Surg Lasers Imaging Retina 48(1):69–74PubMedCrossRef
70.
go back to reference Wang JC et al (2017) Distinguishing white dot syndromes with patterns of choroidal hypoperfusion on optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48(8):638–646PubMedCrossRef Wang JC et al (2017) Distinguishing white dot syndromes with patterns of choroidal hypoperfusion on optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48(8):638–646PubMedCrossRef
71.
go back to reference Lages V et al (2018) MEWDS is a true primary choriocapillaritis and basic mechanisms do not seem to differ from other choriocapillaritis entities. J Curr Ophthalmol 30(4):281–286PubMedPubMedCentralCrossRef Lages V et al (2018) MEWDS is a true primary choriocapillaritis and basic mechanisms do not seem to differ from other choriocapillaritis entities. J Curr Ophthalmol 30(4):281–286PubMedPubMedCentralCrossRef
72.
go back to reference Cerquaglia A et al (2017) Deep inside multifocal choroiditis: an optical coherence tomography angiography approach. Int Ophthalmol 37(4):1047–1051PubMedCrossRef Cerquaglia A et al (2017) Deep inside multifocal choroiditis: an optical coherence tomography angiography approach. Int Ophthalmol 37(4):1047–1051PubMedCrossRef
73.
go back to reference Nakao S et al (2016) Optical coherence tomography angiography for detecting choroidal neovascularization secondary to punctate inner choroidopathy. Ophthalmic Surg Lasers Imaging Retina 47(12):1157–1161PubMedCrossRef Nakao S et al (2016) Optical coherence tomography angiography for detecting choroidal neovascularization secondary to punctate inner choroidopathy. Ophthalmic Surg Lasers Imaging Retina 47(12):1157–1161PubMedCrossRef
75.
go back to reference de Carlo TE et al (2015) Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina 35(11):2392–2399PubMedCrossRef de Carlo TE et al (2015) Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina 35(11):2392–2399PubMedCrossRef
76.
go back to reference Phasukkijwatana N, Iafe N, Sarraf D (2017) Optical coherence tomography angiography of A29 birdshot chorioretinopathy complicated by retinal neovascularization. Retin Cases Brief Rep 11(Suppl 1):S68–S72PubMedCrossRef Phasukkijwatana N, Iafe N, Sarraf D (2017) Optical coherence tomography angiography of A29 birdshot chorioretinopathy complicated by retinal neovascularization. Retin Cases Brief Rep 11(Suppl 1):S68–S72PubMedCrossRef
77.
go back to reference Pepple KL et al (2018) Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol 136(11):1288–1292PubMedCrossRefPubMedCentral Pepple KL et al (2018) Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol 136(11):1288–1292PubMedCrossRefPubMedCentral
78.
go back to reference Casalino G et al (2018) Acute macular neuroretinopathy: pathogenetic insights from optical coherence tomography angiography. Br J Ophthalmol 103(3):410–414PubMedCrossRef Casalino G et al (2018) Acute macular neuroretinopathy: pathogenetic insights from optical coherence tomography angiography. Br J Ophthalmol 103(3):410–414PubMedCrossRef
79.
go back to reference Nemiroff J et al (2018) Optical coherence tomography angiography of acute macular neuroretinopathy reveals deep capillary ischemia. Retin Cases Brief Rep 12(Suppl 1):S12–s15PubMedCrossRef Nemiroff J et al (2018) Optical coherence tomography angiography of acute macular neuroretinopathy reveals deep capillary ischemia. Retin Cases Brief Rep 12(Suppl 1):S12–s15PubMedCrossRef
80.
go back to reference Thanos A et al (2016) Optical coherence tomographic angiography in acute macular neuroretinopathy. JAMA Ophthalmol 134(11):1310–1314PubMedCrossRef Thanos A et al (2016) Optical coherence tomographic angiography in acute macular neuroretinopathy. JAMA Ophthalmol 134(11):1310–1314PubMedCrossRef
81.
go back to reference Lee SY et al (2017) Choroidal features of acute macular neuroretinopathy via optical coherence tomography angiography and correlation with serial multimodal imaging. JAMA Ophthalmol 135(11):1177–1183PubMedPubMedCentralCrossRef Lee SY et al (2017) Choroidal features of acute macular neuroretinopathy via optical coherence tomography angiography and correlation with serial multimodal imaging. JAMA Ophthalmol 135(11):1177–1183PubMedPubMedCentralCrossRef
82.
go back to reference Pecen PE, Smith AG, Ehlers JP (2015) Optical coherence tomography angiography of acute macular neuroretinopathy and paracentral acute middle maculopathy. JAMA Ophthalmol 133(12):1478–1480PubMedPubMedCentralCrossRef Pecen PE, Smith AG, Ehlers JP (2015) Optical coherence tomography angiography of acute macular neuroretinopathy and paracentral acute middle maculopathy. JAMA Ophthalmol 133(12):1478–1480PubMedPubMedCentralCrossRef
83.
go back to reference Del Porto L, Petzold A (2017) Optical coherence tomography angiography and retinal microvascular ramification in acute macular neuroretinopathy and paracentral acute middle maculopathy. Surv Ophthalmol 62(3):387–389PubMedCrossRef Del Porto L, Petzold A (2017) Optical coherence tomography angiography and retinal microvascular ramification in acute macular neuroretinopathy and paracentral acute middle maculopathy. Surv Ophthalmol 62(3):387–389PubMedCrossRef
84.
go back to reference Chu S et al (2018) Projection-resolved OCT angiography of microvascular changes in paracentral acute middle maculopathy and acute macular neuroretinopathy. Invest Ophthalmol Vis Sci 59(7):2913–2922PubMedPubMedCentralCrossRef Chu S et al (2018) Projection-resolved OCT angiography of microvascular changes in paracentral acute middle maculopathy and acute macular neuroretinopathy. Invest Ophthalmol Vis Sci 59(7):2913–2922PubMedPubMedCentralCrossRef
85.
go back to reference Kulikov AN, Maltsev DS, Leongardt TA (2018) Retinal microvasculature alteration in paracentral acute middle maculopathy and acute macular neuroretinopathy: a quantitative optical coherence tomography angiography study. Retin Cases Brief Rep [Epub ahead of print] Kulikov AN, Maltsev DS, Leongardt TA (2018) Retinal microvasculature alteration in paracentral acute middle maculopathy and acute macular neuroretinopathy: a quantitative optical coherence tomography angiography study. Retin Cases Brief Rep [Epub ahead of print]
87.
go back to reference Mehrotra N et al (2018) Panoramic optical coherence tomography angiography features in acute zonal occult outer retinopathy. Indian J Ophthalmol 66(12):1856–1858PubMedPubMedCentralCrossRef Mehrotra N et al (2018) Panoramic optical coherence tomography angiography features in acute zonal occult outer retinopathy. Indian J Ophthalmol 66(12):1856–1858PubMedPubMedCentralCrossRef
88.
go back to reference Naik AU, Ezhilvathani N, Biswas J (2018) Acute zonal occult outer retinopathy: is optical coherence tomography angiography useful? Indian J Ophthalmol 66(11):1637–1639PubMedPubMedCentralCrossRef Naik AU, Ezhilvathani N, Biswas J (2018) Acute zonal occult outer retinopathy: is optical coherence tomography angiography useful? Indian J Ophthalmol 66(11):1637–1639PubMedPubMedCentralCrossRef
89.
go back to reference Agarwal A et al (2017) Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm 25(1):134–145PubMedCrossRef Agarwal A et al (2017) Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm 25(1):134–145PubMedCrossRef
90.
go back to reference Yee HY et al (2016) Optical coherence tomography angiography of choroidal neovascularization associated with tuberculous serpiginous-like choroiditis. Ocul Immunol Inflamm 24(6):699–701PubMedCrossRef Yee HY et al (2016) Optical coherence tomography angiography of choroidal neovascularization associated with tuberculous serpiginous-like choroiditis. Ocul Immunol Inflamm 24(6):699–701PubMedCrossRef
91.
go back to reference Agarwal A et al (2016) Optical coherence tomography angiography features of paradoxical worsening in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm 24(6):621–630PubMedCrossRef Agarwal A et al (2016) Optical coherence tomography angiography features of paradoxical worsening in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm 24(6):621–630PubMedCrossRef
93.
go back to reference Nagpal M et al (2018) Correlation of “panoramic” optical coherence tomography angiography with indocyanine green angiography characteristics of serpiginous-like choroiditis. Ophthalmic Surg Lasers Imaging Retina 49(11):859–869PubMedCrossRef Nagpal M et al (2018) Correlation of “panoramic” optical coherence tomography angiography with indocyanine green angiography characteristics of serpiginous-like choroiditis. Ophthalmic Surg Lasers Imaging Retina 49(11):859–869PubMedCrossRef
94.
go back to reference Turkcu FM et al (2017) OCTA imaging of choroidal Neovascular membrane secondary to toxoplasma retinochoroiditis. Ophthalmic Surg Lasers Imaging Retina 48(6):509–511PubMedCrossRef Turkcu FM et al (2017) OCTA imaging of choroidal Neovascular membrane secondary to toxoplasma retinochoroiditis. Ophthalmic Surg Lasers Imaging Retina 48(6):509–511PubMedCrossRef
95.
go back to reference Spaide RF (2015) Volume rendering of optical coherence tomography angiography reveals extensive retinal vascular contributions to neovascularization in ocular toxoplasmosis. Retina 35(11):2421–2422PubMedCrossRef Spaide RF (2015) Volume rendering of optical coherence tomography angiography reveals extensive retinal vascular contributions to neovascularization in ocular toxoplasmosis. Retina 35(11):2421–2422PubMedCrossRef
96.
go back to reference Vezzola D et al (2018) Swept-source optical coherence tomography and optical coherence tomography angiography in acquired toxoplasmic chorioretinitis: a case report. J Med Case Rep 12(1):358PubMedPubMedCentralCrossRef Vezzola D et al (2018) Swept-source optical coherence tomography and optical coherence tomography angiography in acquired toxoplasmic chorioretinitis: a case report. J Med Case Rep 12(1):358PubMedPubMedCentralCrossRef
97.
go back to reference Costa de Andrade G et al (2018) Optical coherence tomography angiography findings in acute retinal necrosis. Retin Cases Brief Rep [Epub ahead of print] Costa de Andrade G et al (2018) Optical coherence tomography angiography findings in acute retinal necrosis. Retin Cases Brief Rep [Epub ahead of print]
99.
go back to reference Tavassoli S et al (2016) Optical coherence tomography angiography findings in dengue-related maculopathy: a case report. Ophthalmic Surg Lasers Imaging Retina 47(11):1057–1060PubMedCrossRef Tavassoli S et al (2016) Optical coherence tomography angiography findings in dengue-related maculopathy: a case report. Ophthalmic Surg Lasers Imaging Retina 47(11):1057–1060PubMedCrossRef
100.
go back to reference Aggarwal K et al (2017) Optical coherence tomography angiography features of acute macular neuroretinopathy in dengue fever. Indian J Ophthalmol 65(11):1235–1238PubMedPubMedCentralCrossRef Aggarwal K et al (2017) Optical coherence tomography angiography features of acute macular neuroretinopathy in dengue fever. Indian J Ophthalmol 65(11):1235–1238PubMedPubMedCentralCrossRef
101.
go back to reference Pichi F et al (2016) A focal chorioretinal bartonella lesion analyzed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47(6):585–588PubMedCrossRef Pichi F et al (2016) A focal chorioretinal bartonella lesion analyzed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47(6):585–588PubMedCrossRef
Metadata
Title
Optical coherence tomography angiography (OCTA) as a new diagnostic tool in uveitis
Authors
Vita L. S. Dingerkus
Marion R. Munk
Max P. Brinkmann
Florentina J. Freiberg
Florian M. A. Heussen
Stephan Kinzl
Sandra Lortz
Selim Orgül
Matthias Becker
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Ophthalmic Inflammation and Infection / Issue 1/2019
Electronic ISSN: 1869-5760
DOI
https://doi.org/10.1186/s12348-019-0176-9

Other articles of this Issue 1/2019

Journal of Ophthalmic Inflammation and Infection 1/2019 Go to the issue