Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2012

Open Access 01-12-2012 | Poster presentation

Activation of TRPV4 promotes osteoclasts differentiation

Author: Ritsuko Masuyama

Published in: Arthritis Research & Therapy | Special Issue 1/2012

Login to get access

Excerpt

Osteoclast differentiation is critically dependent on cellular calcium (Ca2+) signaling. Intracellular Ca2+ concentration ([Ca2+]i) is regulated by two flux pathways; Ca2+ oscillations evoked by the release of Ca2+ from the endoplasmic reticulum, and/or Ca2+ entry from the extracellular fluid. The latter is carried out by the plasmamembrane localized Ca2+ permeable channel such as "transient receptor potentials (Trps)". Trpv4-deficient mice show an increased bone mass due to impaired osteoclast maturation, because Trpv4 mediates Ca2+ influx at the late stage of osteoclast differentiation and hereby regulates Ca2+ signaling [1]. Furthermore, substitutions of amino acids R616Q/V620I of Trpv4 have been discovered as gain of function mutations resulting in increased Ca2+ transport [2]. Since the region of these substitutions at the trans-membrane pore domain is perfectly conserved between species, we created a mutant of the mouse Trpv4 (Trpv4R616Q/V620I) and characterized it on Ca2+ signaling especially in the occurrences of oscillations at the initial step of osteoclast differentiation. …
Literature
1.
go back to reference Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, et al: TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008, 8: 257-265. 10.1016/j.cmet.2008.08.002.CrossRefPubMed Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, et al: TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008, 8: 257-265. 10.1016/j.cmet.2008.08.002.CrossRefPubMed
2.
go back to reference Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, et al: Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008, 40: 999-1003. 10.1038/ng.166.PubMedCentralCrossRefPubMed Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, et al: Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008, 40: 999-1003. 10.1038/ng.166.PubMedCentralCrossRefPubMed
Metadata
Title
Activation of TRPV4 promotes osteoclasts differentiation
Author
Ritsuko Masuyama
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue Special Issue 1/2012
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3643

Other articles of this Special Issue 1/2012

Arthritis Research & Therapy 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.