Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2004

01-09-2004 | Oral presentation

Mechanisms of pain in arthritis

Author: H-G Schaible

Published in: Arthritis Research & Therapy | Special Issue 3/2004

Login to get access

Excerpt

During inflammation in a joint, patients experience hyperalgesia and sometimes resting pain. Hyperalgesia includes stronger pain upon noxious stimulation (e.g. strong pressure or twisting the joint) and the experience of pain when stimuli are applied that are not felt painful under normal conditions (palpation, movements in the working range). Resting pain is felt without intentional stimulation. Neuronal mechanisms involved in arthritic pain are the peripheral sensitization (sensitization of primary afferent fibres supplying the joint) and central sensitization (sensitization of spinal cord neurons). The peripheral sensitization includes the sensitization of so-called polymodal nociceptors (high threshold receptors that are excited under normal conditions by noxious mechanical stimuli) and of silent nociceptors (neurons that are not excited even by noxious mechanical stimuli). When these nociceptors are sensitized in the process of inflammation they are rendered more excitable and then they even respond to normally non-painful stimuli. In addition, the enhanced input from sensitized nociceptors induces hyperexcitability of second-order neurons in the spinal cord. This central sensitization is an increased gain in the spinal nociceptive processing, and sensitized spinal cord neurons show stronger responses to stimulation of inflamed tissue but also to stimulation of adjacent and even remote healthy tissue. Thus the whole pain pathway is sensitized and this explains why, in the inflamed tissue, pain is evoked by stimuli that do not elicit pain under normal conditions [1]. …
Literature
1.
go back to reference Schaible H-G, Ebersberger A, Segond von Banchet G: Mechanisms of pain in arthritis. Ann NY Acad Sci. 2002, 966: 343-354.CrossRefPubMed Schaible H-G, Ebersberger A, Segond von Banchet G: Mechanisms of pain in arthritis. Ann NY Acad Sci. 2002, 966: 343-354.CrossRefPubMed
2.
go back to reference Vanegas H, Schaible H-G: Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol. 2001, 64: 327-363. 10.1016/S0301-0082(00)00063-0.CrossRefPubMed Vanegas H, Schaible H-G: Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol. 2001, 64: 327-363. 10.1016/S0301-0082(00)00063-0.CrossRefPubMed
3.
go back to reference Ebersberger A, Grubb BD, Willingale HL, Gardiner NJ, Nebe J, Schaible H-G: The intraspinal release of prostaglandin E2 in a model of acute arthritis is accompanied by an upregulation of cyclooxygenase-2 in the rat spinal cord. Neuroscience. 1999, 93: 775-781. 10.1016/S0306-4522(99)00164-5.CrossRefPubMed Ebersberger A, Grubb BD, Willingale HL, Gardiner NJ, Nebe J, Schaible H-G: The intraspinal release of prostaglandin E2 in a model of acute arthritis is accompanied by an upregulation of cyclooxygenase-2 in the rat spinal cord. Neuroscience. 1999, 93: 775-781. 10.1016/S0306-4522(99)00164-5.CrossRefPubMed
4.
go back to reference Vasquez E, Bär K-J, Ebersberger A, Klein B, Vanegas H, Schaible H-G: Spinal prostaglandins are involved in the development but not the maintenance of inflammation-induced spinal hyperexcitability. J Neurosci. 2001, 21: 9001-9008.PubMed Vasquez E, Bär K-J, Ebersberger A, Klein B, Vanegas H, Schaible H-G: Spinal prostaglandins are involved in the development but not the maintenance of inflammation-induced spinal hyperexcitability. J Neurosci. 2001, 21: 9001-9008.PubMed
5.
go back to reference Bär K-J, Natura G, Telleria-Diaz A, Teschner P, Vogel R, Vasquez E, Schaible H-G, Ebersberger A: Changes in the effect of spinal prostaglandin E2 during inflammation – prostaglandin E (EP1–EP4) receptors in spinal nociceptive processing of input from the normal or inflamed knee joint. J Neurosci. 2004, 24: 642-651. 10.1523/JNEUROSCI.0882-03.2004.CrossRefPubMed Bär K-J, Natura G, Telleria-Diaz A, Teschner P, Vogel R, Vasquez E, Schaible H-G, Ebersberger A: Changes in the effect of spinal prostaglandin E2 during inflammation – prostaglandin E (EP1–EP4) receptors in spinal nociceptive processing of input from the normal or inflamed knee joint. J Neurosci. 2004, 24: 642-651. 10.1523/JNEUROSCI.0882-03.2004.CrossRefPubMed
Metadata
Title
Mechanisms of pain in arthritis
Author
H-G Schaible
Publication date
01-09-2004
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue Special Issue 3/2004
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar1376

Other articles of this Special Issue 3/2004

Arthritis Research & Therapy 3/2004 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.