Skip to main content
Top
Published in: Medical Gas Research 1/2012

Open Access 01-12-2012 | Research

Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

Authors: Yiying Zhang, Yuanlin Dong, Zhipeng Xu, Zhongcong Xie

Published in: Medical Gas Research | Issue 1/2012

Login to get access

Abstract

Background

The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening.

Methods

We investigated the effects of magnesium sulfate (Mg2+), propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP) (H4 APP cells) and in six day-old wild-type mice, employing Western blot analysis and flowcytometry.

Results

Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells.

Conclusion

These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thies W, Bleiler L: 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 2011, 7 (2): 208-244. Thies W, Bleiler L: 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 2011, 7 (2): 208-244.
2.
go back to reference Lunkes A, Trottier Y, Mandel JL: Pathological mechanisms in Huntington's disease and other polyglutamine expansion diseases. Essays Biochem. 1998, 33: 149-163.PubMed Lunkes A, Trottier Y, Mandel JL: Pathological mechanisms in Huntington's disease and other polyglutamine expansion diseases. Essays Biochem. 1998, 33: 149-163.PubMed
3.
go back to reference Namura S, et al: Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998, 18 (10): 3659-3668.PubMed Namura S, et al: Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998, 18 (10): 3659-3668.PubMed
4.
go back to reference Holtzman DM, Deshmukh M: Caspases: a treatment target for neurodegenerative disease?. Nat Med. 1997, 3 (9): 954-955. 10.1038/nm0997-954.PubMed Holtzman DM, Deshmukh M: Caspases: a treatment target for neurodegenerative disease?. Nat Med. 1997, 3 (9): 954-955. 10.1038/nm0997-954.PubMed
5.
go back to reference Kim TW, et al: Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science. 1997, 277 (5324): 373-376. 10.1126/science.277.5324.373.PubMed Kim TW, et al: Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science. 1997, 277 (5324): 373-376. 10.1126/science.277.5324.373.PubMed
6.
go back to reference Loetscher H, et al: Presenilins are processed by caspase-type proteases. J Biol Chem. 1997, 272 (33): 20655-20659. 10.1074/jbc.272.33.20655.PubMed Loetscher H, et al: Presenilins are processed by caspase-type proteases. J Biol Chem. 1997, 272 (33): 20655-20659. 10.1074/jbc.272.33.20655.PubMed
7.
go back to reference Barnes NY, et al: Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motoneurons. J Neurosci. 1998, 18 (15): 5869-5880.PubMed Barnes NY, et al: Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motoneurons. J Neurosci. 1998, 18 (15): 5869-5880.PubMed
8.
go back to reference Kovacs DM, et al: Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer's disease mutations in human neuroglioma cells. J Neurochem. 1999, 73 (6): 2278-2285.PubMed Kovacs DM, et al: Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer's disease mutations in human neuroglioma cells. J Neurochem. 1999, 73 (6): 2278-2285.PubMed
9.
go back to reference Su JH, et al: Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport. 1994, 5 (18): 2529-2533. 10.1097/00001756-199412000-00031.PubMed Su JH, et al: Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport. 1994, 5 (18): 2529-2533. 10.1097/00001756-199412000-00031.PubMed
10.
go back to reference Su JH, Deng G, Cotman CW: Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol. 1997, 56 (1): 86-93. 10.1097/00005072-199701000-00009.PubMed Su JH, Deng G, Cotman CW: Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol. 1997, 56 (1): 86-93. 10.1097/00005072-199701000-00009.PubMed
11.
go back to reference Tesco G, et al: Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007, 54 (5): 721-737. 10.1016/j.neuron.2007.05.012.PubMedCentralPubMed Tesco G, et al: Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007, 54 (5): 721-737. 10.1016/j.neuron.2007.05.012.PubMedCentralPubMed
12.
go back to reference Mattson MP: Contributions of mitochondrial alterations, resulting from bad genes and a hostile environment, to the pathogenesis of Alzheimer's disease. Int Rev Neurobiol. 2002, 53: 387-409.PubMed Mattson MP: Contributions of mitochondrial alterations, resulting from bad genes and a hostile environment, to the pathogenesis of Alzheimer's disease. Int Rev Neurobiol. 2002, 53: 387-409.PubMed
13.
go back to reference Raina AK, et al: Apoptotic promoters and inhibitors in Alzheimer's disease: Who wins out?. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27 (2): 251-254. 10.1016/S0278-5846(03)00020-4.PubMed Raina AK, et al: Apoptotic promoters and inhibitors in Alzheimer's disease: Who wins out?. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27 (2): 251-254. 10.1016/S0278-5846(03)00020-4.PubMed
14.
go back to reference Burguillos MA, et al: Caspase signalling controls microglia activation and neurotoxicity. Nature. 2011, 472 (7343): 319-324. 10.1038/nature09788.PubMed Burguillos MA, et al: Caspase signalling controls microglia activation and neurotoxicity. Nature. 2011, 472 (7343): 319-324. 10.1038/nature09788.PubMed
15.
go back to reference Eckenhoff RG, et al: Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004, 101 (3): 703-709. 10.1097/00000542-200409000-00019.PubMed Eckenhoff RG, et al: Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004, 101 (3): 703-709. 10.1097/00000542-200409000-00019.PubMed
16.
go back to reference Brambrink AM, et al: Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology. 2010, 112 (4): 834-841. 10.1097/ALN.0b013e3181d049cd.PubMedCentralPubMed Brambrink AM, et al: Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology. 2010, 112 (4): 834-841. 10.1097/ALN.0b013e3181d049cd.PubMedCentralPubMed
17.
go back to reference Xie Z, et al: The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 2008, 64 (6): 618-627. 10.1002/ana.21548.PubMedCentralPubMed Xie Z, et al: The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 2008, 64 (6): 618-627. 10.1002/ana.21548.PubMedCentralPubMed
18.
go back to reference Xie Z, et al: The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology. 2006, 104 (5): 988-994. 10.1097/00000542-200605000-00015.PubMed Xie Z, et al: The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology. 2006, 104 (5): 988-994. 10.1097/00000542-200605000-00015.PubMed
19.
go back to reference Xie Z, et al: Isoflurane-induced apoptosis: a potential pathogenic link between delirium and dementia. The journals of gerontology. Series A. Biological sciences and medical sciences. 2006, 61 (12): 1300-1306.PubMed Xie Z, et al: Isoflurane-induced apoptosis: a potential pathogenic link between delirium and dementia. The journals of gerontology. Series A. Biological sciences and medical sciences. 2006, 61 (12): 1300-1306.PubMed
20.
go back to reference Xie Z, et al: The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci. 2007, 27 (6): 1247-1254. 10.1523/JNEUROSCI.5320-06.2007.PubMed Xie Z, et al: The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci. 2007, 27 (6): 1247-1254. 10.1523/JNEUROSCI.5320-06.2007.PubMed
21.
go back to reference Wei H, et al: Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005, 1037 (1–2): 139-147.PubMed Wei H, et al: Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005, 1037 (1–2): 139-147.PubMed
22.
go back to reference Wei H, et al: The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology. 2008, 108 (2): 251-260. 10.1097/01.anes.0000299435.59242.0e.PubMed Wei H, et al: The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology. 2008, 108 (2): 251-260. 10.1097/01.anes.0000299435.59242.0e.PubMed
23.
go back to reference Loop T, Priebe HJ: Costs of anaesthesia. Eur J Anaesthesiol. 2005, 22 (2): 162-10.1017/S0265021505260283. author reply 162–3PubMed Loop T, Priebe HJ: Costs of anaesthesia. Eur J Anaesthesiol. 2005, 22 (2): 162-10.1017/S0265021505260283. author reply 162–3PubMed
24.
go back to reference Zhang B, et al: The effects of isoflurane and desflurane on cognitive function in humans. Anesth Analg. 2012, 114 (2): 410-415. 10.1213/ANE.0b013e31823b2602.PubMedCentralPubMed Zhang B, et al: The effects of isoflurane and desflurane on cognitive function in humans. Anesth Analg. 2012, 114 (2): 410-415. 10.1213/ANE.0b013e31823b2602.PubMedCentralPubMed
25.
go back to reference Fournier N, Ducet G, Crevat A: Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr. 1987, 19 (3): 297-303. 10.1007/BF00762419.PubMed Fournier N, Ducet G, Crevat A: Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr. 1987, 19 (3): 297-303. 10.1007/BF00762419.PubMed
26.
go back to reference Bernardi P: The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta. 1996, 1275 (1–2): 5-9.PubMed Bernardi P: The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta. 1996, 1275 (1–2): 5-9.PubMed
27.
go back to reference Bernardi P, Petronilli V: The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996, 28 (2): 131-138. 10.1007/BF02110643.PubMed Bernardi P, Petronilli V: The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996, 28 (2): 131-138. 10.1007/BF02110643.PubMed
28.
go back to reference Hansson MJ, et al: Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem. 2004, 89 (3): 715-729. 10.1111/j.1471-4159.2004.02400.x.PubMed Hansson MJ, et al: Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem. 2004, 89 (3): 715-729. 10.1111/j.1471-4159.2004.02400.x.PubMed
29.
go back to reference He L, Lemasters JJ: Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun. 2005, 334 (3): 829-837. 10.1016/j.bbrc.2005.06.170.PubMed He L, Lemasters JJ: Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. Biochem Biophys Res Commun. 2005, 334 (3): 829-837. 10.1016/j.bbrc.2005.06.170.PubMed
30.
go back to reference Nicolli A, et al: Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996, 271 (4): 2185-2192. 10.1074/jbc.271.4.2185.PubMed Nicolli A, et al: Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996, 271 (4): 2185-2192. 10.1074/jbc.271.4.2185.PubMed
31.
go back to reference Norman KG, et al: Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients. Mitochondrion. 2010, 10 (2): 94-101. 10.1016/j.mito.2009.10.001.PubMed Norman KG, et al: Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients. Mitochondrion. 2010, 10 (2): 94-101. 10.1016/j.mito.2009.10.001.PubMed
32.
go back to reference Alessandri B, et al: Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma. 2002, 19 (7): 829-841. 10.1089/08977150260190429.PubMed Alessandri B, et al: Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma. 2002, 19 (7): 829-841. 10.1089/08977150260190429.PubMed
33.
go back to reference Osman MM, et al: Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides. 2011, 45 (6): 359-368. 10.1016/j.npep.2011.04.002.PubMed Osman MM, et al: Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides. 2011, 45 (6): 359-368. 10.1016/j.npep.2011.04.002.PubMed
34.
go back to reference Halestrap AP, Clarke SJ, Javadov SA: Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res. 2004, 61 (3): 372-385. 10.1016/S0008-6363(03)00533-9.PubMed Halestrap AP, Clarke SJ, Javadov SA: Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res. 2004, 61 (3): 372-385. 10.1016/S0008-6363(03)00533-9.PubMed
35.
go back to reference Wei H, Liang G, Yang H: Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity. Neurosci Lett. 2007, 425 (1): 59-62. 10.1016/j.neulet.2007.08.011.PubMedCentralPubMed Wei H, Liang G, Yang H: Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity. Neurosci Lett. 2007, 425 (1): 59-62. 10.1016/j.neulet.2007.08.011.PubMedCentralPubMed
36.
go back to reference Ljubkovic M, et al: Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. Am J Physiol Cell Physiol. 2007, 292 (5): C1583-C1590.PubMed Ljubkovic M, et al: Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. Am J Physiol Cell Physiol. 2007, 292 (5): C1583-C1590.PubMed
37.
go back to reference Pan C, et al: The potential dual effects of anesthetic isoflurane on hypoxia-induced caspase-3 activation and increases in beta-site amyloid precursor protein-cleaving enzyme levels. Anesth Analg. 2011, 113 (1): 145-152. 10.1213/ANE.0b013e3182185fee.PubMedCentralPubMed Pan C, et al: The potential dual effects of anesthetic isoflurane on hypoxia-induced caspase-3 activation and increases in beta-site amyloid precursor protein-cleaving enzyme levels. Anesth Analg. 2011, 113 (1): 145-152. 10.1213/ANE.0b013e3182185fee.PubMedCentralPubMed
38.
go back to reference Xu Z, et al: The potential dual effects of anesthetic isoflurane on Abeta-induced apoptosis. Curr Alzheimer Res. 2011, 8 (7): 741-752. 10.2174/156720511797633223.PubMedCentralPubMed Xu Z, et al: The potential dual effects of anesthetic isoflurane on Abeta-induced apoptosis. Curr Alzheimer Res. 2011, 8 (7): 741-752. 10.2174/156720511797633223.PubMedCentralPubMed
39.
go back to reference Zaugg M, et al: Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection. Anesthesiology. 2002, 97 (1): 15-23. 10.1097/00000542-200207000-00004.PubMed Zaugg M, et al: Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection. Anesthesiology. 2002, 97 (1): 15-23. 10.1097/00000542-200207000-00004.PubMed
40.
go back to reference Jiang MT, et al: Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K + channels reconstituted in lipid bilayers. Anesth Analg. 2007, 105 (4): 926-932. 10.1213/01.ane.0000278640.81206.92. table of contentsPubMed Jiang MT, et al: Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K + channels reconstituted in lipid bilayers. Anesth Analg. 2007, 105 (4): 926-932. 10.1213/01.ane.0000278640.81206.92. table of contentsPubMed
41.
go back to reference Zhang G, et al: Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci. 2008, 28 (17): 4551-4560. 10.1523/JNEUROSCI.5694-07.2008.PubMedCentralPubMed Zhang G, et al: Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci. 2008, 28 (17): 4551-4560. 10.1523/JNEUROSCI.5694-07.2008.PubMedCentralPubMed
42.
go back to reference Lu Y, et al: Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology. 2010, 112 (6): 1404-1416. 10.1097/ALN.0b013e3181d94de1.PubMedCentralPubMed Lu Y, et al: Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology. 2010, 112 (6): 1404-1416. 10.1097/ALN.0b013e3181d94de1.PubMedCentralPubMed
43.
go back to reference Rossaint J, et al: Propofol: neuroprotection in an in vitro model of traumatic brain injury. Crit Care. 2009, 13 (2): R61-10.1186/cc7795.PubMedCentralPubMed Rossaint J, et al: Propofol: neuroprotection in an in vitro model of traumatic brain injury. Crit Care. 2009, 13 (2): R61-10.1186/cc7795.PubMedCentralPubMed
44.
go back to reference Shu L, et al: Inhibition of neuron-specific CREB dephosphorylation is involved in propofol and ketamine-induced neuroprotection against cerebral ischemic injuries of mice. Neurochem Res. 2012, 37 (1): 49-58. 10.1007/s11064-011-0582-3.PubMed Shu L, et al: Inhibition of neuron-specific CREB dephosphorylation is involved in propofol and ketamine-induced neuroprotection against cerebral ischemic injuries of mice. Neurochem Res. 2012, 37 (1): 49-58. 10.1007/s11064-011-0582-3.PubMed
45.
go back to reference Marinov MB, et al: Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg. 1996, 85 (1): 117-124. 10.3171/jns.1996.85.1.0117.PubMed Marinov MB, et al: Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg. 1996, 85 (1): 117-124. 10.3171/jns.1996.85.1.0117.PubMed
46.
go back to reference Zhang Y, et al: The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem. 2010, 285 (6): 4025-4037. 10.1074/jbc.M109.065664.PubMedCentralPubMed Zhang Y, et al: The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem. 2010, 285 (6): 4025-4037. 10.1074/jbc.M109.065664.PubMedCentralPubMed
47.
go back to reference Zhang J, et al: 2-Deoxy-D-glucose attenuates isoflurane-induced cytotoxicity in an in vitro cell culture model of H4 human neuroglioma cells. Anesth Analg. 2011, 113 (6): 1468-1475. 10.1213/ANE.0b013e31822e913c.PubMedCentralPubMed Zhang J, et al: 2-Deoxy-D-glucose attenuates isoflurane-induced cytotoxicity in an in vitro cell culture model of H4 human neuroglioma cells. Anesth Analg. 2011, 113 (6): 1468-1475. 10.1213/ANE.0b013e31822e913c.PubMedCentralPubMed
48.
go back to reference Zhang Y, et al: Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Abeta oligomerization. PLoS One. 2011, 6 (11): e27019-10.1371/journal.pone.0027019.PubMedCentralPubMed Zhang Y, et al: Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Abeta oligomerization. PLoS One. 2011, 6 (11): e27019-10.1371/journal.pone.0027019.PubMedCentralPubMed
49.
go back to reference Culley DJ, et al: Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004, 100 (2): 309-314. 10.1097/00000542-200402000-00020.PubMed Culley DJ, et al: Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004, 100 (2): 309-314. 10.1097/00000542-200402000-00020.PubMed
50.
go back to reference Bianchi SL, et al: Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging. 2008, 29 (7): 1002-1010. 10.1016/j.neurobiolaging.2007.02.009.PubMed Bianchi SL, et al: Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging. 2008, 29 (7): 1002-1010. 10.1016/j.neurobiolaging.2007.02.009.PubMed
51.
go back to reference Rezzani R: Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol. 2006, 21 (3): 301-316.PubMed Rezzani R: Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol. 2006, 21 (3): 301-316.PubMed
52.
go back to reference Wu X, et al: The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alpha, IL-6, and IL-1beta. Neurobiol Aging. 2012, 33 (7): 1364-1378. 10.1016/j.neurobiolaging.2010.11.002.PubMedCentralPubMed Wu X, et al: The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alpha, IL-6, and IL-1beta. Neurobiol Aging. 2012, 33 (7): 1364-1378. 10.1016/j.neurobiolaging.2010.11.002.PubMedCentralPubMed
53.
go back to reference Dingledine R, et al: The glutamate receptor ion channels. Pharmacol Rev. 1999, 51 (1): 7-61.PubMed Dingledine R, et al: The glutamate receptor ion channels. Pharmacol Rev. 1999, 51 (1): 7-61.PubMed
54.
go back to reference Zhang Y, et al: Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 2012, 71 (5): 687-698. 10.1002/ana.23536.PubMedCentralPubMed Zhang Y, et al: Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 2012, 71 (5): 687-698. 10.1002/ana.23536.PubMedCentralPubMed
55.
go back to reference Buljubasic N, et al: Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells. Anesthesiology. 1992, 76 (6): 990-998. 10.1097/00000542-199206000-00020.PubMed Buljubasic N, et al: Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells. Anesthesiology. 1992, 76 (6): 990-998. 10.1097/00000542-199206000-00020.PubMed
56.
go back to reference Friederich P, Benzenberg D, Urban BW: Ketamine and propofol differentially inhibit human neuronal K(+) channels. Eur J Anaesthesiol. 2001, 18 (3): 177-183.PubMed Friederich P, Benzenberg D, Urban BW: Ketamine and propofol differentially inhibit human neuronal K(+) channels. Eur J Anaesthesiol. 2001, 18 (3): 177-183.PubMed
57.
go back to reference Shao H, et al: Dose-dependent protective effect of propofol against mitochondrial dysfunction in ischaemic/reperfused rat heart: role of cardiolipin. Br J Pharmacol. 2008, 153 (8): 1641-1649. 10.1038/bjp.2008.45.PubMedCentralPubMed Shao H, et al: Dose-dependent protective effect of propofol against mitochondrial dysfunction in ischaemic/reperfused rat heart: role of cardiolipin. Br J Pharmacol. 2008, 153 (8): 1641-1649. 10.1038/bjp.2008.45.PubMedCentralPubMed
Metadata
Title
Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore
Authors
Yiying Zhang
Yuanlin Dong
Zhipeng Xu
Zhongcong Xie
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Medical Gas Research / Issue 1/2012
Electronic ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-2-20

Other articles of this Issue 1/2012

Medical Gas Research 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.