Skip to main content
Top
Published in: Medical Gas Research 1/2012

Open Access 01-12-2012 | Review

Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide

Author: Vicki L Mahan

Published in: Medical Gas Research | Issue 1/2012

Login to get access

Abstract

Studies in animal models show that the primary mechanism by which heme-oxygenases impart beneficial effects is due to the gaseous molecule carbon monoxide (CO). Produced in humans mainly by the catabolism of heme by heme-oxygenase, CO is a neurotransmitter important for multiple neurologic functions and affects several intracellular pathways as a regulatory molecule. Exogenous administration of inhaled CO or carbon monoxide releasing molecules (CORM’s) impart similar neurophysiological responses as the endogenous gas. Its’ involvement in important neuronal functions suggests that regulation of CO synthesis and biochemical properties may be clinically relevant to neuroprotection and the key may be a change in metabolic substrate from glucose to lactate. Currently, the drug is under development as a therapeutic agent and safety studies in humans evaluating the safety and tolerability of inhaled doses of CO show no clinically important abnormalities, effects, or changes over time in laboratory safety variables. As an important therapeutic option, inhaled CO has entered clinical trials and its clinical role as a neuroprotective and neurotherapeutic agent has been suggested. In this article, we review the neuroprotective effects of endogenous CO and discuss exogenous CO as a neuroprotective and neurotherapeutic agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH: Carbon monoxide: a putative neural messenger. Science. 1993, 259 (5093): 381-384. 10.1126/science.7678352.PubMed Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH: Carbon monoxide: a putative neural messenger. Science. 1993, 259 (5093): 381-384. 10.1126/science.7678352.PubMed
2.
go back to reference Dawson TM, Snyder SH: Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci. 1994, 14 (9): 5147-5159.PubMed Dawson TM, Snyder SH: Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci. 1994, 14 (9): 5147-5159.PubMed
3.
go back to reference Coburn RF: The measurement of endogenous carbon monoxide production. J Appl Physiol. 2012, 112 (11): 1949-1955. 10.1152/japplphysiol.00174.2012.PubMed Coburn RF: The measurement of endogenous carbon monoxide production. J Appl Physiol. 2012, 112 (11): 1949-1955. 10.1152/japplphysiol.00174.2012.PubMed
4.
go back to reference Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M: Characterization of Rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 2004, 336 (2): 241-250. 10.1016/j.gene.2004.04.002.PubMed Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M: Characterization of Rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 2004, 336 (2): 241-250. 10.1016/j.gene.2004.04.002.PubMed
5.
go back to reference Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S: Gene expression profiles of heme oxygenase isoforms in the Rat brain. Brain Res. 2002, 954: 51-59. 10.1016/S0006-8993(02)03338-3.PubMed Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S: Gene expression profiles of heme oxygenase isoforms in the Rat brain. Brain Res. 2002, 954: 51-59. 10.1016/S0006-8993(02)03338-3.PubMed
6.
go back to reference Vincent SR, Das S, Maines MD: Brain heme oxygenase isoenzymes and nitric oxide synthase are Co-localized in select neurons. Neuroscience. 1994, 63 (1): 223-231. 10.1016/0306-4522(94)90018-3.PubMed Vincent SR, Das S, Maines MD: Brain heme oxygenase isoenzymes and nitric oxide synthase are Co-localized in select neurons. Neuroscience. 1994, 63 (1): 223-231. 10.1016/0306-4522(94)90018-3.PubMed
7.
go back to reference Hanafy KA, Oh J, Otterbein LE: Carbon monoxide and the brain: time to rethink the dogma. Curr Pharm Des. 2012 Oct 18. Epub ahead of print Hanafy KA, Oh J, Otterbein LE: Carbon monoxide and the brain: time to rethink the dogma. Curr Pharm Des. 2012 Oct 18. Epub ahead of print
8.
go back to reference Boehning D, Snyder SH: Circadian rhythms. Carbon monoxide and clocks. Science. 2002, 298 (5602): 2339-2340. 10.1126/science.1080339.PubMed Boehning D, Snyder SH: Circadian rhythms. Carbon monoxide and clocks. Science. 2002, 298 (5602): 2339-2340. 10.1126/science.1080339.PubMed
9.
go back to reference Prabhakar NR, Dinerman JL, Agani FH, Snyder SH: Carbon monoxide: a role in carotid body chemoreception. Neurobiology. 1995, 92: 1994-1997. Prabhakar NR, Dinerman JL, Agani FH, Snyder SH: Carbon monoxide: a role in carotid body chemoreception. Neurobiology. 1995, 92: 1994-1997.
10.
go back to reference Brann DW, Bhat GK, Lamar CA, Mahesh VB: Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology. 1997, 65 (6): 385-395. 10.1159/000127201.PubMed Brann DW, Bhat GK, Lamar CA, Mahesh VB: Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology. 1997, 65 (6): 385-395. 10.1159/000127201.PubMed
11.
go back to reference Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW: Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol. 2006, 290 (5): C1399-C1410.PubMed Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW: Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol. 2006, 290 (5): C1399-C1410.PubMed
12.
go back to reference Chang EF, Wong RF, Vreman HJ, Igarashi T, Galo E, Sharp FR, Stevenson DK, Noble-Haeusslein LJ: Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci. 2003, 23 (9): 3689-3696.PubMed Chang EF, Wong RF, Vreman HJ, Igarashi T, Galo E, Sharp FR, Stevenson DK, Noble-Haeusslein LJ: Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci. 2003, 23 (9): 3689-3696.PubMed
13.
go back to reference Vukomanovic D, McLaughlin BE, Rahman MN, Szarek WA, Brien JF, Jia Z, Nakatsu K: Selective activation of heme oxygenase-2 by menadione. Can J Physiol Pharmacol. 2011, 89 (11): 861-864.PubMed Vukomanovic D, McLaughlin BE, Rahman MN, Szarek WA, Brien JF, Jia Z, Nakatsu K: Selective activation of heme oxygenase-2 by menadione. Can J Physiol Pharmacol. 2011, 89 (11): 861-864.PubMed
14.
go back to reference Namiranian K, Koehler RC, Sapirstein A, Doré S: Stroke outcomes in mice lacking the genes for neuronal heme oxygenase-2 and nitric oxide synthase. Curr Neurovasc Res. 2005, 2 (1): 23-27. 10.2174/1567202052773517.PubMed Namiranian K, Koehler RC, Sapirstein A, Doré S: Stroke outcomes in mice lacking the genes for neuronal heme oxygenase-2 and nitric oxide synthase. Curr Neurovasc Res. 2005, 2 (1): 23-27. 10.2174/1567202052773517.PubMed
15.
go back to reference Wang J, Zhuang H, Doré S: Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis. 2006, 22 (3): 473-476. 10.1016/j.nbd.2005.12.009.PubMed Wang J, Zhuang H, Doré S: Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis. 2006, 22 (3): 473-476. 10.1016/j.nbd.2005.12.009.PubMed
16.
go back to reference Wang J, Doré S: Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience. 2008, 155: 1133-1141. 10.1016/j.neuroscience.2008.07.004.PubMed Wang J, Doré S: Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience. 2008, 155: 1133-1141. 10.1016/j.neuroscience.2008.07.004.PubMed
17.
go back to reference Doré S, Goto S, Sampei K, Blackshaw S, Hester LD, Ingi T, Sawa A, Traystman RJ, Koehler RC, Snyder SH: Hemd oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience. 2000, 99 (4): 587-592. 10.1016/S0306-4522(00)00216-5.PubMed Doré S, Goto S, Sampei K, Blackshaw S, Hester LD, Ingi T, Sawa A, Traystman RJ, Koehler RC, Snyder SH: Hemd oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience. 2000, 99 (4): 587-592. 10.1016/S0306-4522(00)00216-5.PubMed
18.
go back to reference Goto S, Sampei K, Alkayed NJ, Doré S, Koehler RC: Characterization of a New double-filament model of focal cerebral ischemia in heme oxygenase-2-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2003, 285 (1): R222-R230.PubMed Goto S, Sampei K, Alkayed NJ, Doré S, Koehler RC: Characterization of a New double-filament model of focal cerebral ischemia in heme oxygenase-2-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2003, 285 (1): R222-R230.PubMed
19.
go back to reference Kinobe RT, Dercho RA, Nakatsu K: Inhibitors of the heme oxygenase – carbon monoxide system: on the doorstep of the clinic?. Can J Physiol Pharmacol. 2008, 86 (9): 577-599. 10.1139/Y08-066.PubMed Kinobe RT, Dercho RA, Nakatsu K: Inhibitors of the heme oxygenase – carbon monoxide system: on the doorstep of the clinic?. Can J Physiol Pharmacol. 2008, 86 (9): 577-599. 10.1139/Y08-066.PubMed
20.
go back to reference Doré S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, Gallagher M, Trastman RJ, Hurn PD, Koehler RC, Snyder SH: Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med. 1999, 5 (10): 656-663.PubMed Doré S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, Gallagher M, Trastman RJ, Hurn PD, Koehler RC, Snyder SH: Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med. 1999, 5 (10): 656-663.PubMed
21.
go back to reference Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW, Parfenova H: HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol. 2006, 291 (5): C897-C908. 10.1152/ajpcell.00032.2006.PubMed Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW, Parfenova H: HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol. 2006, 291 (5): C897-C908. 10.1152/ajpcell.00032.2006.PubMed
22.
go back to reference Kinobe R, Ji Y, Nakatsu K: Peroxynitrite-mediated inactivation of heme oxygenases. BMC Pharmacol. 2004, 4: 26-10.1186/1471-2210-4-26.PubMedCentralPubMed Kinobe R, Ji Y, Nakatsu K: Peroxynitrite-mediated inactivation of heme oxygenases. BMC Pharmacol. 2004, 4: 26-10.1186/1471-2210-4-26.PubMedCentralPubMed
23.
go back to reference Boehning D, Sedaghat L, Sedlak TW, Snyder SH: Heme oxygenase-2 is activated by calcium-calmodulin. J Biol Chem. 2004, 279 (30): 30927-30930. 10.1074/jbc.C400222200.PubMed Boehning D, Sedaghat L, Sedlak TW, Snyder SH: Heme oxygenase-2 is activated by calcium-calmodulin. J Biol Chem. 2004, 279 (30): 30927-30930. 10.1074/jbc.C400222200.PubMed
24.
go back to reference Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH: Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron. 2003, 40 (1): 129-137. 10.1016/S0896-6273(03)00596-8.PubMed Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH: Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron. 2003, 40 (1): 129-137. 10.1016/S0896-6273(03)00596-8.PubMed
25.
go back to reference Gomperts SN, Carroll R, Malenka RC, Nicoli RA: Distinct roles for ionotropic and metabotropic glutamate receptors in the maturation of excitatory synapses. J Neurosci. 2000, 20 (6): 2229-2237.PubMed Gomperts SN, Carroll R, Malenka RC, Nicoli RA: Distinct roles for ionotropic and metabotropic glutamate receptors in the maturation of excitatory synapses. J Neurosci. 2000, 20 (6): 2229-2237.PubMed
26.
go back to reference Nathanson JA, Scavone C, Scanlon C, McKee M: The cellular Na + pump as a site of action for carbon monoxide and glutamate: a mechanism for long-term modulationof cellular activity. Neuron. 1995, 14 (4): 781-794. 10.1016/0896-6273(95)90222-8.PubMed Nathanson JA, Scavone C, Scanlon C, McKee M: The cellular Na + pump as a site of action for carbon monoxide and glutamate: a mechanism for long-term modulationof cellular activity. Neuron. 1995, 14 (4): 781-794. 10.1016/0896-6273(95)90222-8.PubMed
27.
go back to reference Lin CH, Lo WC, Hsiao M, Tung CS, Tseng CJ: Interactions of carbon monoixde and metabotropic glutamate receptor groups in the nucleus tractus solitarii of rats. J Pharmacol Exp Ther. 2004, 308 (3): 1213-1218.PubMed Lin CH, Lo WC, Hsiao M, Tung CS, Tseng CJ: Interactions of carbon monoixde and metabotropic glutamate receptor groups in the nucleus tractus solitarii of rats. J Pharmacol Exp Ther. 2004, 308 (3): 1213-1218.PubMed
28.
go back to reference Parfenova H, Leffler CW: Cerebroprotective functions of HO-2. Curr Pharm Des. 2008, 14 (5): 443-453. 10.2174/138161208783597380.PubMedCentralPubMed Parfenova H, Leffler CW: Cerebroprotective functions of HO-2. Curr Pharm Des. 2008, 14 (5): 443-453. 10.2174/138161208783597380.PubMedCentralPubMed
29.
go back to reference Aztatzi-Santillán E, Nares-López FE, Márquez-Valadez B, Aguilera P, Chaánez-Cárdenas ME: The protective role of heme oxygenase-1 in cerebral ischemia. Cent Nerv Syst Agents Med Chem. 2010, 10 (4): 310-316. 10.2174/187152410793429764.PubMed Aztatzi-Santillán E, Nares-López FE, Márquez-Valadez B, Aguilera P, Chaánez-Cárdenas ME: The protective role of heme oxygenase-1 in cerebral ischemia. Cent Nerv Syst Agents Med Chem. 2010, 10 (4): 310-316. 10.2174/187152410793429764.PubMed
30.
go back to reference Bastianetto S, Quirion R: Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp Neurol. 2010, 225 (2): 237-239. 10.1016/j.expneurol.2010.06.019.PubMed Bastianetto S, Quirion R: Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp Neurol. 2010, 225 (2): 237-239. 10.1016/j.expneurol.2010.06.019.PubMed
31.
go back to reference Jazwa A, Cuadrado A: Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Cur Drug Targets. 2010, 11 (12): 1517-1531. 10.2174/1389450111009011517. Jazwa A, Cuadrado A: Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Cur Drug Targets. 2010, 11 (12): 1517-1531. 10.2174/1389450111009011517.
32.
go back to reference Cuadrado A, Rojo AI: Heme oxygenase-1 as a therpeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des. 2008, 14 (5): 429-442. 10.2174/138161208783597407.PubMed Cuadrado A, Rojo AI: Heme oxygenase-1 as a therpeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des. 2008, 14 (5): 429-442. 10.2174/138161208783597407.PubMed
33.
go back to reference Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP: Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010, 13 (11): 1763-1811. 10.1089/ars.2009.3074.PubMedCentralPubMed Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP: Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010, 13 (11): 1763-1811. 10.1089/ars.2009.3074.PubMedCentralPubMed
34.
go back to reference Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D: Heme oxygenase-1 and neurodegneration: expanding frontiers of engagement. J Neurochem. 2009, 110 (2): 469-485. 10.1111/j.1471-4159.2009.06160.x.PubMed Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D: Heme oxygenase-1 and neurodegneration: expanding frontiers of engagement. J Neurochem. 2009, 110 (2): 469-485. 10.1111/j.1471-4159.2009.06160.x.PubMed
35.
go back to reference Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield D: Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005, 233 (1–2): 145-162.PubMed Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield D: Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005, 233 (1–2): 145-162.PubMed
36.
go back to reference Chien WL, Lee T, Hung SY, Kang KH, Lee MJ, Fu WM: Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1. J Neurochem. 2011, 117 (4): 643-653.PubMed Chien WL, Lee T, Hung SY, Kang KH, Lee MJ, Fu WM: Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1. J Neurochem. 2011, 117 (4): 643-653.PubMed
37.
go back to reference Ryter SW, Choi AM: Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp. 2007, 280: 165-175.PubMed Ryter SW, Choi AM: Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp. 2007, 280: 165-175.PubMed
38.
go back to reference Wen Z, Liu Y, Li F, Wen T: Low dose of carbon monoxide Intraperitoneal injection provides potent protection against GalN/LPS-induced acute liver injury in mide. J Appl Toxicol. 2012, 10.1002/jat.2806. Epub ahead of time Wen Z, Liu Y, Li F, Wen T: Low dose of carbon monoxide Intraperitoneal injection provides potent protection against GalN/LPS-induced acute liver injury in mide. J Appl Toxicol. 2012, 10.1002/jat.2806. Epub ahead of time
39.
go back to reference Moody BF, Calvert JW: Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res. 2011, 1: 3-10.1186/2045-9912-1-3.PubMedCentralPubMed Moody BF, Calvert JW: Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res. 2011, 1: 3-10.1186/2045-9912-1-3.PubMedCentralPubMed
40.
go back to reference Takagi T, Naito Y, Uchiyama K, Suzuki T, Hirata I, Mizushima K, Tsuboi H, Hayashi N, Handa O, Ishikawa T, Yagi N, Kokura S, Ichikawa H, Yoshikawa T: Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2011, 56 (6): 1663-1671. 10.1007/s10620-010-1484-y.PubMed Takagi T, Naito Y, Uchiyama K, Suzuki T, Hirata I, Mizushima K, Tsuboi H, Hayashi N, Handa O, Ishikawa T, Yagi N, Kokura S, Ichikawa H, Yoshikawa T: Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2011, 56 (6): 1663-1671. 10.1007/s10620-010-1484-y.PubMed
41.
go back to reference Tsui TY, Obed A, Siu YT, Yet SF, Prantl L, Schiltt HJ, Fan ST: Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock. 2007, 27 (2): 165-171. 10.1097/01.shk.0000239781.71516.61.PubMed Tsui TY, Obed A, Siu YT, Yet SF, Prantl L, Schiltt HJ, Fan ST: Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock. 2007, 27 (2): 165-171. 10.1097/01.shk.0000239781.71516.61.PubMed
42.
go back to reference Vieira HL, Queiroga CS, Alves PM: Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J Neurochem. 2008, 107 (2): 375-384. 10.1111/j.1471-4159.2008.05610.x.PubMed Vieira HL, Queiroga CS, Alves PM: Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J Neurochem. 2008, 107 (2): 375-384. 10.1111/j.1471-4159.2008.05610.x.PubMed
43.
go back to reference Zeynalov E, Doré S: Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res. 2009, 15 (2): 133-137. 10.1007/s12640-009-9014-4.PubMedCentralPubMed Zeynalov E, Doré S: Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res. 2009, 15 (2): 133-137. 10.1007/s12640-009-9014-4.PubMedCentralPubMed
44.
go back to reference Wang B, Cao W, Biswal S, Doré S: Carbon monoxide – activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke. 2011, 42: 2605-2610. 10.1161/STROKEAHA.110.607101.PubMedCentralPubMed Wang B, Cao W, Biswal S, Doré S: Carbon monoxide – activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke. 2011, 42: 2605-2610. 10.1161/STROKEAHA.110.607101.PubMedCentralPubMed
45.
go back to reference Mahan VL, Zurakowski D, Otterbein LE, Pigula FA: “Inhaled carbon monoxide provides cerebral cytoprotection in pigs”. Plos one. 2012, 7: e41982-10.1371/journal.pone.0041982.PubMedCentralPubMed Mahan VL, Zurakowski D, Otterbein LE, Pigula FA: “Inhaled carbon monoxide provides cerebral cytoprotection in pigs”. Plos one. 2012, 7: e41982-10.1371/journal.pone.0041982.PubMedCentralPubMed
46.
47.
go back to reference Dienel GA: Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2011, 32: 1107-1138.PubMedCentralPubMed Dienel GA: Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2011, 32: 1107-1138.PubMedCentralPubMed
48.
go back to reference Schurr A, Dong WQ, Reid KH, West CA, Rigor BM: Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res. 1988, 438 (1–2): 311-314.PubMed Schurr A, Dong WQ, Reid KH, West CA, Rigor BM: Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res. 1988, 438 (1–2): 311-314.PubMed
49.
go back to reference Rasmussen P, Wyss MT, Lundby C: Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011, 25 (9): 2865-2873. 10.1096/fj.11-183822.PubMed Rasmussen P, Wyss MT, Lundby C: Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011, 25 (9): 2865-2873. 10.1096/fj.11-183822.PubMed
50.
go back to reference Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y: Lactate effectively covers energy demands during neuronal network activity in neonatal Hippocampal slices. Front Neuroenergetics. 2011, 3: 2-PubMedCentralPubMed Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y: Lactate effectively covers energy demands during neuronal network activity in neonatal Hippocampal slices. Front Neuroenergetics. 2011, 3: 2-PubMedCentralPubMed
51.
go back to reference Schurr A, Miller JJ, Payne RS, Rigor BM: An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci. 1999, 19 (1): 34-39.PubMed Schurr A, Miller JJ, Payne RS, Rigor BM: An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci. 1999, 19 (1): 34-39.PubMed
52.
go back to reference Schurr A: Lactate: the ultimate cerebral oxidative energy substrate?. J Cereb Blood Flow Metab. 2006, 26 (1): 142-152. 10.1038/sj.jcbfm.9600174.PubMed Schurr A: Lactate: the ultimate cerebral oxidative energy substrate?. J Cereb Blood Flow Metab. 2006, 26 (1): 142-152. 10.1038/sj.jcbfm.9600174.PubMed
53.
go back to reference Schurr A, Gozal E: Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in Hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol. 2011, 2: 96-PubMedCentralPubMed Schurr A, Gozal E: Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in Hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol. 2011, 2: 96-PubMedCentralPubMed
54.
go back to reference Won SJ, Jang BG, Yoo BH, Sohn M, Lee MW, Choi BY, Kim JH, Song HK, Suh SW: Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab. 2012 Won SJ, Jang BG, Yoo BH, Sohn M, Lee MW, Choi BY, Kim JH, Song HK, Suh SW: Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab. 2012
55.
go back to reference Moxon-Lester L, Sinclair K, Burke C: Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction. Brain Res. 2007, 1179: 79-88.PubMed Moxon-Lester L, Sinclair K, Burke C: Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction. Brain Res. 2007, 1179: 79-88.PubMed
56.
go back to reference Won SJ, Jang BG, Yoo BH: Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab. 2012, 2012: 1-11. Won SJ, Jang BG, Yoo BH: Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab. 2012, 2012: 1-11.
57.
go back to reference Telezhkin V, Brazier SP, Mears R, Müller CT, Riccardi D, Kemp PJ: Cycsteine residue 911 in C-terminal tail of human BK(Ca)α channel subunit is crucial for its activation by carbon monoxide. Plugers Arch. 2011, 461 (6): 665-675. 10.1007/s00424-011-0924-7. Telezhkin V, Brazier SP, Mears R, Müller CT, Riccardi D, Kemp PJ: Cycsteine residue 911 in C-terminal tail of human BK(Ca)α channel subunit is crucial for its activation by carbon monoxide. Plugers Arch. 2011, 461 (6): 665-675. 10.1007/s00424-011-0924-7.
58.
go back to reference Bak LK, Obel LF, Walls AB, Schousboe A, Faek SAA, Jajo FS, Waagepetersen HS: Novel model of neuronal bioenergetics: postsynaptic utilizationof glucose but Not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons. ASN Neuro. 2012, 4 (3): e00083-PubMedCentralPubMed Bak LK, Obel LF, Walls AB, Schousboe A, Faek SAA, Jajo FS, Waagepetersen HS: Novel model of neuronal bioenergetics: postsynaptic utilizationof glucose but Not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons. ASN Neuro. 2012, 4 (3): e00083-PubMedCentralPubMed
59.
go back to reference Almeida AS, Queiroga CS, Sousa MF, Alves PM, Vieira HL: Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of BCL-2. J Biol Chem. 2012, 287 (14): 10761-10770. 10.1074/jbc.M111.306738.PubMedCentralPubMed Almeida AS, Queiroga CS, Sousa MF, Alves PM, Vieira HL: Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of BCL-2. J Biol Chem. 2012, 287 (14): 10761-10770. 10.1074/jbc.M111.306738.PubMedCentralPubMed
60.
go back to reference Chang CH, Zhao Y, Lee C, Ganguli M: Smoking, death, and Alzheimer disease: a case of competing risks. Alzheimer Dis Assoc Disord. 2012, 26: 300-306. 10.1097/WAD.0b013e3182420b6e.PubMedCentralPubMed Chang CH, Zhao Y, Lee C, Ganguli M: Smoking, death, and Alzheimer disease: a case of competing risks. Alzheimer Dis Assoc Disord. 2012, 26: 300-306. 10.1097/WAD.0b013e3182420b6e.PubMedCentralPubMed
61.
go back to reference Mergenthaler P, Dirnagl U: Protective conditioning of the brain: expressway or roadblock?. J Physiol. 2011, 589 (Pt17): 4147-4155.PubMedCentralPubMed Mergenthaler P, Dirnagl U: Protective conditioning of the brain: expressway or roadblock?. J Physiol. 2011, 589 (Pt17): 4147-4155.PubMedCentralPubMed
62.
go back to reference Koch S, Sacco RL, Perez-Pinzon MA: Preconditioning the brain: moving on to the next frontier of neurotherapeutics. Stroke. 2012, 43 (6): 1455-1457. 10.1161/STROKEAHA.111.646919.PubMedCentralPubMed Koch S, Sacco RL, Perez-Pinzon MA: Preconditioning the brain: moving on to the next frontier of neurotherapeutics. Stroke. 2012, 43 (6): 1455-1457. 10.1161/STROKEAHA.111.646919.PubMedCentralPubMed
63.
go back to reference Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI: Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Lif Sci. 2011, 89 (15–16): 570-576. Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI: Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Lif Sci. 2011, 89 (15–16): 570-576.
64.
go back to reference Sanders RD, Manning HJ, Robertson NJ, Ma D, Edwards AD, Hagberg H, Maze M: Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology. 2010, 113 (1): 233-249. 10.1097/ALN.0b013e3181dc1b84.PubMed Sanders RD, Manning HJ, Robertson NJ, Ma D, Edwards AD, Hagberg H, Maze M: Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology. 2010, 113 (1): 233-249. 10.1097/ALN.0b013e3181dc1b84.PubMed
66.
go back to reference Zhao H, Ren C, Chen X, Shen J: From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets. 2012, 13 (2): 173-187. 10.2174/138945012799201621.PubMedCentralPubMed Zhao H, Ren C, Chen X, Shen J: From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets. 2012, 13 (2): 173-187. 10.2174/138945012799201621.PubMedCentralPubMed
67.
go back to reference Rybnikova E, Vorobyev M, Pivina S, Samoilov M: Postconditioning by mild hypoxic exposures reduces Rat brain injury caused by severe hypoxia. Neurosci Lett. 2012, 513 (1): 100-105. 10.1016/j.neulet.2012.02.019.PubMed Rybnikova E, Vorobyev M, Pivina S, Samoilov M: Postconditioning by mild hypoxic exposures reduces Rat brain injury caused by severe hypoxia. Neurosci Lett. 2012, 513 (1): 100-105. 10.1016/j.neulet.2012.02.019.PubMed
68.
go back to reference Segal N, Matsuura T, Caldwell E, Sarraf M, McKnite S, Zviman M, Aufderheide TP, Halperin HR, Lurie KG, Yannopoulos D: Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after prolonged untreated ventricular fibrillation. Resuscitation. 2012, 83 (11): 1397-1403. 10.1016/j.resuscitation.2012.04.005.PubMed Segal N, Matsuura T, Caldwell E, Sarraf M, McKnite S, Zviman M, Aufderheide TP, Halperin HR, Lurie KG, Yannopoulos D: Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after prolonged untreated ventricular fibrillation. Resuscitation. 2012, 83 (11): 1397-1403. 10.1016/j.resuscitation.2012.04.005.PubMed
69.
go back to reference Hahn CD, Manlhiot C, Schmidt MR, Nielsen TT, Redington AN: Remote ischemic Per-conditioning: a novel therapy for acute stroke?. Stroke. 2011, 42 (10): 2960-2962. 10.1161/STROKEAHA.111.622340.PubMed Hahn CD, Manlhiot C, Schmidt MR, Nielsen TT, Redington AN: Remote ischemic Per-conditioning: a novel therapy for acute stroke?. Stroke. 2011, 42 (10): 2960-2962. 10.1161/STROKEAHA.111.622340.PubMed
70.
go back to reference Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, Chai W, Sun XD: Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardial arrest through regulation of delta opiod receptor system. Neuroscience. 2012, 202: 352-362.PubMed Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, Chai W, Sun XD: Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardial arrest through regulation of delta opiod receptor system. Neuroscience. 2012, 202: 352-362.PubMed
71.
go back to reference Zeng Y, Xie K, Dong H, Zhang H, Wang F, Li Y, Xiong L: Hyperbaric oxygen precondtioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res. 2012, 1452: 140-150.PubMed Zeng Y, Xie K, Dong H, Zhang H, Wang F, Li Y, Xiong L: Hyperbaric oxygen precondtioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res. 2012, 1452: 140-150.PubMed
Metadata
Title
Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide
Author
Vicki L Mahan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Medical Gas Research / Issue 1/2012
Electronic ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-2-32

Other articles of this Issue 1/2012

Medical Gas Research 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine